Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липолиз

Рис. 23.8. Гормональная регуляция липолиза пунктиром показаны положительные (+) и отрицательные (-) эффекты Рис. 23.8. <a href="/info/1278075">Гормональная регуляция</a> липолиза пунктиром показаны положительные (+) и отрицательные (-) эффекты

    Важнейшим этапом регуляции синтеза липидов служит активация ацетил-СоА — карбоксилазы цитратом (гл. 8, разд. В,2 рис. 11-1). Помимо этого, синтез и распад триглицеридов, накапливающихся в печени и жировой ткани, находятся под сложным гормональным контролем. Так, адреналин и глюкагон, стимулируя образование с АМР, вызывают активацию липаз, которые расщепляют триглицериды таким путем происходит мобилизация жировых депо. С другой стороны, инсулин способствует накоплению жиров этот эффект обусловлен не только увеличением активности ферментов липогенеза, и в первую очередь АТР-зависимого цитратрасщепляющего фермента [уравнение (7-70)], но также ингибированием образования с АМР и, как следствие, подавлением липолиза в клетках. Наконец, сывороточная липопротеидлипаза. (называемая также осветляющим фактором ) расщепляет липиды, входящие в состав сывороточных липопротеидов, в процессе прохождения последних через мелкие капилляры. Освобождающиеся при этоМ жирные кислоты поступают в клетки, где вновь включаются в состав-липидов [44]. [c.556]

    Особую роль в регуляции метаболизма липидов играют гормоны. Следует обратить внимание на то, что жировой обмен регулируется практически теми же гормонами, что и обмен углеводов — адреналин и норадреналин, глюкагон, глюкокортикоиды, гормоны передней доли гипофиза (соматотропный гормон и АКТГ), а также тироксин и половые гормоны. Адреналин и норадреналин активируют липолиз в жировой ткани, в результате усиливается мобилизация жирных кислот из жировых депо и содержание неэстерифицированных жирных кислот в плазме повышается. Клк уже отмечалось (гл. 23.3), эти гормоны через цАМФ активируют соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т. е. образованию ее активной формы. [c.356]

    В настоящее время явления кетонемии и кетонурии при сахарном диабете или голодании можно объяснить следующим образом. И диабет, и голодание сопровождаются резким сокращением запасов гликогена в печени. Многие ткани и органы, в частности мышечная ткань, находятся в состоянии энергетического голода (при недостатке инсулина глюкоза не может с достаточной скоростью поступать в клетку). В этой ситуации благодаря возбуждению метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод, резко усиливаются липолиз и мобилизация большого количества жирных кислот из жировых депо в печень. В печени происходит интенсивное образование кетоновых тел. Образующиеся в необычно большом количестве кетоновые тела (ацетоуксусная и -гидроксимасляная кислоты) с током крови транспортируются из печени к периферическим тканям. Периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением и как следствие возникает кетонемия. [c.405]


    Липолиз триглицеридов в жировой ткани . В качестве источника энергии могут использоваться только свободные, т.е. неэстерифицированные, жирные кислоты. Поэтому триглицериды сначала гидролизуются при помощи специфических тканевых ферментов—липаз—до глицерина и свободных жирных кислот. Последние из жировых депо могут переходить в плазму крови (мобилизация высших жирных кислот), после чего они используются тканями и органами тела в качестве энергетического материала. [c.371]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    Скорость липолиза триглицеридов не является постоянной, она подвержена регулирующему влиянию различных факторов, среди которых особое значение имеют нейрогормональные (табл. 11.1). [c.371]

    Фосфорилирование гликогенсинтазы осуществляет та же протеинкиназа, которая активирует киназу фосфорилазы Ь. В тканях локализовано семейство различных цАМФ-зависимых протеинкиназ. В жировой ткани обнаружены рецепторы катехоламинов. Активация одной из протеинкиназ вызывает фосфорилирование и активацию липазы и, как следствие, стимуляцию липолиза. [c.157]

    Сведения о липазах растительных тканей пока еще отрывочны, но ясно, что эти ферменты имеются во всех тканях растений. Впрочем, их часто наблюдали во время разрушения тканей. Это приводит к активации явлений липолиза даже при малом содержании воды. Таким образом, в ряде случаев липиды присутствуют в белковых препаратах в виде продуктов гидролиза, а не в нативной форме. [c.293]

    Гидролиз жира (липолиз) происходит под действием фермента липазы, выделяемой молочно-кислыми бактериями и другими микроорганизмами, а также липаз молокосвертывающих ферментов. В результате гидролиза триглицириды жира расщепляются на глицерин и жировые кислоты, а при взаимодействии с водой процесс протекает следующим образом  [c.1084]

    Осн. ф-ция Г.-стимуляция расщепления гликогена в печени, в результате чего происходит повышение концентрации глюкозы в крови. Г. стимулирует также липолиз жировой ткани и выработку инсулина поджелудочной железой и сокращение сердечной мышцы. По своему действию Г.-антагонист инсулина. [c.589]

    Биохимические функции. Глюкагон является гормоном-антагонистом инсулина. Он стимулирует гликогенолиз и липолиз, а также активирует процесс глюконеогенеза. Глюкагон взаимодействует с клетками-мишенями по мембрано-опосредованному механизму (гл. 11). Через вторичный посредник — цАМФ он активирует протеинкиназу, киназу фосфорилазу и фосфорилазу Ь, что приводит к мобилизации глюкозы из гликогена. Как и инсулин, глюкагон регулирует метаболические процессы преимущественно в печени, мышцах и жировой ткани. [c.167]

    Липазы гидролизуют эфирные связи в триглицеридах. Для этих ферментов свойственна стереоспецифичность, т е. способность гидролизовать сложноэфирную связь или в положении 1, или в положении 3. На скорость липолиза оказывают влияние соли натрия, кальция, желчных кислот. Третичная структура липазы предусматривает наличие гидрофобного сайта, при помощи которого она соединяется с липидами, и гидрофильного хвоста, локализованного в водной фазе. Активный центр фермента находится вблизи гидрофобной головки. [c.80]

    ЛИН. Следует отметить, что глюкокортикоиды стимулируют липолиз, ускоряя синтез липазы цАМФ независимым пугем, который ингибируется инсулином. Схема гормональной регуляции липолиза в жировой ткани приведена на рис. 23.8. [c.328]

    Отмечено, что если содержание глюкозы в жировой ткани понижено (например, при голодании), то образуется лишь незначительное количество глицерол-З-фосфата и освободившиеся в ходе липолиза свободные жирные кислоты не могут быть использованы для ресинтеза триглицеридов, поэтому жирные кислоты покидают жировую ткань. Напротив, активация гликолиза в жировой ткани способствует накоплению в ней триглицеридов, а также входящих в их состав жирных кислот. В печени наблюдаются оба пути образования глицерол-З-фосфата. [c.392]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]


    Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т.д. [c.556]

    Из вне надпочечниковых эффектов можно отметить фосфорилирование липазы в жировой ткани, что приводит к ее активации и усилению процессов липолиза, а также увеличение секреции инсулина из поджелудочной железы. [c.146]

Таблица 11.1. Влшшие некоторых факторов на липолиз триглицеридов в жировой ткани [Климов А.Н., Никульчева Н.Г., 1995] Таблица 11.1. Влшшие <a href="/info/657427">некоторых факторов</a> на липолиз триглицеридов в <a href="/info/97896">жировой ткани</a> [Климов А.Н., Никульчева Н.Г., 1995]
    Другие гормоны, в частности гормоны щитовидной железы, половые гормоны, сами по себе не оказывают прямого влияния на липолиз, действуют опосредованно, чаще всего как факторы, стимулирующие действие других гормонов. [c.356]

    Осн. ф-ция К.-активация мн. ферментов аденилатциклазы, фосфодиэстеразы циклич. нуклеотидов, киназы фосфо-рилаз и легких цепей миозина (киназы-ферменты, катализирующие перенос фосфорильной группы с АТФ на субстрат), Са -зависимой протеинкиназы цитоплазмы и мембран, фосфолипазы Aj и др. Благодаря этому он влияет на гликогенолиз и липолиз, секрецию нейромедиаторов, адренергич. передачу регуляторного сигнала, изменяет функциональные св-ва рецепторов, ускоряет активный транспорт Са в сердце и мозге, препятствует гуанозинтрифосфат-зависимой полимеризации тубулина (белок, из к-рого состоят жгутики и реснички клеток животных и растений), влияет на скорость деления клеток. [c.293]

    Рецепторы этих К. есть практически во всех тканях человека и животных. Ь-Норадреналин взаимод. преим. с а-, а Ь-адреналин-с а- и р-адренергич. рецепторами. Через а-ре-цепторы (активируют фосфоинозитидный обмен) осуществляются вазоконстрикторные эффекты К. (приводят к сужению кровеносных сосудов), стимулируется гликогенолиз, секреция адренокортикотропина, инсулина, ренина и др. физиологически активных в-в. Через Р-рецепторы (активируют аденилатциклазу) К. уменьшают периферич. сопротивление сосудов, стимулируют гликогенолиз, липолиз и белковый обмен, повышают частоту и силу сердечных сокращений. [c.352]

    Липаза пшеницы [8] также гидролизует преимущественно связи 1 и 3 триацилглицеролов. Этот фермент связан с клеточными структурами и не может быть обнаружен в гомогенатах. В водной среде для действия фермента необходимы ионы кальция Са++. В слабооводненной среде его активность пропорциональна активности воды. Ввиду этого лри хранении зерна и продуктов его помола может происходить липолиз. [c.291]

    Секретин, как и глюкагон, вазоактивный интестинальный пептид, гастрин, гастроингибирующий пептид и ряд других, относится к гормонам желудочно-кишечного тракта. Считается, что основная роль секретина состоит в регуляции секреции сока поджелудочной железы [219], куда он попадает с током крови и где также оказывает стимулирующий эффект на секрецию инсулина [220, 221]. Позднее был выявлен ряд других функций секретина в пищеварительной системе. Оказалось, что он стимулирует выделение пепсина желудком и бикарбонатов и воды поджелудочной железой и печенью, влияет на сокращение пилорического канала, торможение моторики желудка, приводит к ослаблению электрической активности тонких кишок, усилению кровотока в поджелудочной железе, интенсификации липолиза и гликолиза в жировой ткани, торможению реабсорбции бикарбонатов в почках и т.д. [222]. [c.372]

    Биосинтез триглицеридов из глицерина (или глицеральдегида, или дигидроксиацетона) включает стадию образования фосфатидных кислот и а,р-диглицеридов. Каждая стадия ацилирования протекает под действием отдельного фермента. Альтернативный путь, включающий переацилирование 2-0-ацилглицерина, который образуется путем липолиза триглицеридов, в значительной степени осуществляется у животных, получающих в корме жиры. [c.104]

    Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая—нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием катехоламинов. [c.403]

    Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около [c.403]

    Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. Недавно было показано, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Фосфодиэстераза играет важную роль в поддержании постоянного уровня цАМФ в тканях, поэтому увеличение содержания инсулина должно повы- [c.403]

    При развитии бактериальных процессов липолиз и окисление липидов усиливается. Процессы липолиза липидов снижаются при охлаждении (замораживании), но никогда полностью не прекращаются. Окисление лшшдов мороженой рыбы значительно сокращает сроки хранения многих, особенно жирных рыб. В процессе холодильного храпения происходит и ряд других процессов, например частичное разрушение витаминов. При размораживании вместе с соком выделяются частично минеральные вещества. [c.177]

Рис. 6.12. График Лайнуивера—Бэрка для определения в реакциях липолиза крупно- и мелкодисперсных эмульсий темные кружки — крупнодисперсные эмульсии, светлые — мелкодисперсные обе реакции имеют примерно одинако-, но различные Рис. 6.12. <a href="/info/186164">График Лайнуивера</a>—<a href="/info/831167">Бэрка</a> для определения в реакциях липолиза крупно- и <a href="/info/1467150">мелкодисперсных эмульсий</a> темные кружки — крупнодисперсные эмульсии, светлые — мелкодисперсные обе реакции имеют примерно одинако-, но различные
    Биохимические функции. Соматотропин контролирует синтез белка, влияя на транспорт аминоюгслот из крови в мышечные ткани. Кроме того, показано влияние СТГ на процессы транскрипции и образование зрелой РНК. Действие на липидный обмен проявляется в активации липаз за счет их фосфорилирования и, как следствие, в стимуляции липолиза. Отмечено многоплановое влияние СТГ на углеводный обмен. Активация глюконеогенеза, а также ингибирование транспорта глюкозы в клетки под действием этого гормона приводят к гипергликемии и повышенному синтезу гликогена. Соматотропин регулирует процессы роста всего организма. Гипофункция гипофиза, приводящая к снижению синтеза и секреции СТГ, является причиной пропорционального уменьшения роста всех органов человека и животных. [c.148]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Липолиз (гидролиз) резервных липидов в периферических тканях катализируется гормончувствительной липазой до глицерола и свободных высщих жирных кислот. Наиболее активно этот процесс идет в жировой ткани, которая распространена по всему организму под кожей, в брющной полости, образует жировые прослойки вокруг отдельных органов. Свободные жирные кислоты либо вновь вовлекаются в синтез липидов, либо подвергаются р-окис-лению, либо диффундируют в плазму крови, где связываются с сывороточным альбумином и транспортируются в другие ткани, являясь одним из основных источников энергии. [c.326]

    Гормоночувствительная липаза является важнейшим регуляторным ферментом процессов липолиза. Многие гормоны являются активаторами этого фермента. К гормонам, которые быстро промотируют липолиз, относятся прежде всего катехоламины (адреналин и норадреналин) и глюкагон, которые стимулируют активность аденилатциклазы — фермента, катализирующего образование из АТФ циклического АМФ (цАМФ). Механизм активации тригли-церидлипазы в этом случае аналогичен механизму гормональной стимуляции фермента гликогенолиза — гликогенфосфорилазы, т. е. осуществляется путем ковалентной химической модификации по механизму фосфорилирования — дефосфорилирования (гл. 18). [c.327]

    Ряд других гормонов не оказывают прямого влияния на липолиз, а действуют как факторы, стимулирующие или, наоборот, ингибирующее действие других гормонов. К таким гормонам относятся адренокортикотропный гормон (АКТГ), тиреотропный гормон (ТТГ), гормон роста, вазопрессин, инсу- [c.327]

    Кроме этого, известно, что глюкагон и адреналин через цАМФ-зависи-мую протеинкиназу катализируют фосфорилирование ацетил-КоА-карбокси-лазы и переводят ее в неактивную форму, тем самым ингибируя процессы ли-погенеза. Что касается механизма регуляторного действия СГГ и АКТГ, также активирующих процессы липолиза, то первичный механизм их действия связан, по-видимому, с индукцией синтеза аденилатциклазы и гормончувствительной липазы. Здесь уместно напомнить, что если адреналин стимулирует липолиз почти мгновенно, то действие гормонов гипофиза на липолиз характеризуется наличием достаточно продолжительной лаг-фазы. [c.356]

    Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. В настоящее время установлено, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани и таким образом играет важную роль в поддержании стационарного уровня цАМФ в тканях, а следовательно, и образовании активной формы липазы. Инсулин оказывает стимулирующее действие на процессы биосинтеза жирных кислот и триацилглицеролов, окисление глюкозы и образование пирувата. Все эти эффекты зависят от концентрации глюкозы и могут бьггь объяснены способностью инсулина увеличивать поступление глюкозы в клетки жировой ткани. [c.356]

    Выраженная гиперлипемия развивается при сахарном диабете. Обычно она сопровождается ацидозом. Недостаток инсулина приводит к снижению фосфодиэстеразной активности, что в конечном счете способствует активации липазы и усилению липолиза в жировых депо. Гиперлипемия при сахарном диабете носит транспортный характер, так как избыточный распад жиров на периферии приводит к повышенному транспорту жирных кислот в печень, где происходит синтез липидов. Как отмечалось ранее, при сахарном диабете и голодании в печени образуется необычно большое количество кетоновых тел (ацетоуксусная и р-гидроксимасляная кислоты), которые с током крови транспортируются из печени к периферическим тканям. Хотя периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой их концентрации в крови органы не справляются с их окислением и, как следствие, возникает состояние патологического кетоза, т. е. накопление кетоновых тел в организме. Кетоз сопровождается кетонемией и кетонурией — повышением содержания кетоновых тел в крови и выделением их с мочой. Возрастание концентрации триацилглицеролов в плазме крови отмечается также при беременности, нефротическом синдроме, ряде заболеваний печени. Гиперлипемия, как правило, сопровождается увеличением содержания в плазме крови фосфолипидов, изменением соотношения между фосфолипидами и холестеролом, составляющем в норме 1,5 1. Снижение содержания фосфолипидов в плазме крови наблюдается при остром тяжелом гепатите, жировой дистрофии, циррозе печени и некоторых других заболеваниях. [c.357]

    Липотропины. В IQ64— 1967 гг. американский биохимик Чо Хао Ли выделил из гипофиза группу гормонов, стимулирующих липолиз в жировой тканн они были названы а-, - и V nnorponn-намн. Эти гормоны являются белками, а не пептидами, но нх рассмотрение в данной главе оправдано в связи с их ролью в биосинтезе нейропептидов. В частности, было установлено, что -липотропин, содержащий 91 аминокислотный остаток, подвергается в мозге ферментативному расщеплению (процессингу) по пептидной связи между остатками 59 и 60 с образованием а-липотропина и -эндор-фина. [c.271]

    Общая диагностика стеатореи может быть осуществлена с использованием 3(3-хриолеина. Поскольку триолеин является триглицеридом с длинной цепью, его эффективное поглощение зависит от всех процессов, связанных с расщеплением и поглощением жира, а именно, от адекватного липолиза, растворения в присутствие жёлчных солей и от состояния слизистой кишечника. У пациентов с нарушением любой из вышеперечисленных функций выделение С02, обусловленное расщеплением и поглощением меченых триглицеридов, существенным образом снижается. Таким образом, триолеин является достаточно чувствительным индикатором стеатореи, однако он не даёт дифференциальной диагностики между панкреатической недостаточностью и синдромом [c.471]

    Если использовать триглицериды со средними цепями, например С-три-октаноин, то, поскольку такие триглицериды являются водорастворимыми, скорость их поглощения зависит, главным образом, от липолиза под действием желудочной и поджелудочной липазы. Таким образом, тест с 13С-триок-таноином может дифференцировать панкреатическую и не-панкреатическую формы стеатореи. Недостатком теста является то, что липолиз триглицеридов со средними цепями протекает существенно быстрее и не отражает действительных процессов поглощения жиров при нормальной диете, когда основное количество жира приходится на триглицериды с длинными цепями. [c.472]

Рис. 18.6.5. Схематический липолиз привести 1,3-дистеароил, 2 [карбоксил-триглицеридов С] октаноил глицерол. Такая молекула Рис. 18.6.5. Схематический липолиз привести 1,3-дистеароил, 2 [карбоксил-триглицеридов С] октаноил глицерол. Такая молекула

Смотреть страницы где упоминается термин Липолиз: [c.274]    [c.9]    [c.10]    [c.11]    [c.23]    [c.262]    [c.403]   
Биологическая химия Изд.3 (1998) -- [ c.371 , c.372 , c.403 ]

Биохимия (2004) -- [ c.146 , c.326 , c.334 ]

Биохимия человека Т.2 (1993) -- [ c.170 , c.268 , c.269 , c.270 ]

Биохимия человека Том 2 (1993) -- [ c.170 , c.268 , c.269 , c.270 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.182 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.140 , c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте