Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гептаны, разделение

    Оксид алюминия G, просушенный на воздухе в течение 72 ч растворитель —, ч-гептан разделение в камере с насыщенной атмосферой. [c.156]

    К последней, третьей группе относятся такие системы пар жидкостей, как гептан и вода, бензин и вода, толуол и вода, техника разделения которых не вызывает особых трудностей, ибо они легко поддаются расслоению простым механическим способом, например, отстоем. [c.10]


    На рис. 10 показано влияние температуры на адсорбцию системы а-метилнафталин — декалин на силикагеле в области почти всех возможных концентраций [20]. Для сравнения иа этом же графике приведены данные для системы толуол — и-гептан при 25°, изображенные пунктирной линией. Влияние температуры на коэффициент разделения непрерывно уменьшается вплоть до самых высоких исследованных концентраций. [c.146]

    При выборе растворителя должны учитываться также его стоимость, антикоррозийные свойства, легкость отделения от целевого продукта и т. д. Обычно расчетные данные но разделению смесей обязательно проверяют на опытных установках. B качестве растворителей в промышленных условиях используют этиленгликоль, гептан и др. [c.94]

    Одним из малоизученных электрокинетических явлений в дисперсных системах нефтяных твердых углеводородов является их поведение в неоднородном электрическом поле. Эта область представляет наибольший интерес, так как действие сильного неоднородного электрического поля вызывает направленное движение частиц, которое можно использовать для разделения нефтяных дисперсий. С целью выделения наиболее высокоплавких углеводородов из петролатума первой ступени деасфальтизации смеси тюменских нефтей [116] была приготовлена суспензия петролатум— н-гептан (1 10 по массе). После нагрева до полного растворения систему охлаждали до 22 °С. Выбор этой температуры определяется возможностью выделить из петролатума углеводороды с наибольшей температурой плавления, так как в этом случае высокоплавкие углеводороды являются дисперсной фазой, а раствор низкоплавких углеводородов в гептане — дисперсионной средой. В данной среде частицы дисперсной фазы обладают отрицательным зарядом, который определяли методом электрофореза. [c.188]

    Зависимость числа теоретических ступеней разделения от концентрации для смеси бензол —н-гептан (по данным Штаге—Шульце). [c.110]

    Зависимость числа теоретических ступеней разделения от показателя преломления для эталонной смеси к-гептан—метилциклогексан. [c.110]

    Вместо значения абсциссы Xg можно также использовать и другие показатели, например плотность или показатель преломления, и аналогичным способом определять число теоретических ступеней разделения при этом на график наносят соответствующие значения показателей для загрузки куба и дистиллята и находят разность соответствующих чисел на оси ординат. Рис. 71 иллюстрирует зависимость числа теоретических ступеней от коэффициента преломления для модельной смеси н-гептан — метилциклогексан [147]. [c.110]


    Зависимость степени чистоты дистиллята от числа теоретических ступеней разделения и флегмового числа для исходной смеси я-гептан —метилциклогексан [(50% (мол.)] [c.130]

    Чтобы можно было сравнивать различные насадки и колонны по их разделяющей способности, рекомендуется использовать эталонные смеси, указанные в табл. 26. Для испытания колонн при атмосферном давлении в соответствии с международными нормами рекомендуется применять в первую очередь смеси н-гептан— метилциклогексан—бензол—1,2-дихлорэтан и четыреххлористый углерод — бензол для числа теоретических ступеней разделения /г = 50—60, бензол—этиленхлорид для п = 50—60 и четыреххло- [c.140]

    Расчет числа теоретических ступеней разделения и флегмового числа. Кривая равновесия системы бензол — -гептан известна (см. табл. 26, разд. 4.10.3), она асимптотически приближается к диагонали [при увеличении концентрации до 100% (мол.)]. [c.187]

    Испытание колонны на эффективность (см. разд. 4.10.8) нельзя провести с применением разделяемой смеси. Даже если содержание легколетучего компонента в кубе довести до 2% (мол.), для обогащения дистиллята до 99% (мол.) при v = оо потребуется всего только 18 теоретических ступеней разделения. Испытание обычно проводят, используя смесь н-гептан — метилциклогексан при нагрузке 2 л/ч. Если в этих условиях не бу- [c.189]

    В качестве примера экстрактивной ректификации смеси близкокипящих компонентов уже было рассмотрено разделение смеси н-гептан-метилциклогексан с применением анилина. Система метилциклогексан—толуол имеет кривую равновесия, которая приближается к диагонали диаграммы равновесия пар — жидкость асимптотически. Чтобы получить чистый метилциклогексан, необходимо практически бесконечно большое число теоретических тарелок. Благодаря добавке 55% (мол.) такого полярного растворителя как анилин разделение сильно упрощается. [c.314]

    Кох и Ван-Рэй [59] предложили более простую модификацию насадки Стедмана, которая состоит из сферических элементов, придающих насадке большую эластичность (рис. 2766). Отбортованная пружинящая кромка элемента плотно прижимается к стенкам колонны, поэтому можно использовать трубы с отклонением размера диаметра от 0,5 до 1 мм. Значения ВЭТС у оригинальной насадки Стедмана и ее модификации практически равны между собой, что было установлено при исследовании процесса ректификации смеси н-гептан — метилциклогексан (табл. 53). Удерживающая способность этих колонн по жидкости при нагрузках 190— 500 мл/(см -ч) составляет 0,2—0,75 мл на одну теоретическую ступень разделения. [c.356]

    Для полного разделения неуглеводородных и углеводородных компонентов и эффективного разделения двух основных составляющих неуглеводородной части нефтей, природных асфальтов и тяжелых нефтяных остатков (асфальтенов и смол), предложено большое число модификаций селективного растворения и осаждения с использованием разнообразных органических растворителей в комбинации с адсорбционной хроматографией. Одним из примеров такой модификации может служить предложенная М. Бестужевым [5] методика выделения асфальтенов из асфальта с последующим разделением их на фракции. В качестве растворителей были последовательно использованы н-гептан (горячий), циклогексан, смесь н-гептана с бензолом, диэтиловый эфир. Фракционирование завершалось хроматографическим разделением. [c.43]

    Изучалось разделение ароматических и неароматических углеводородов селективной адсорбцией [75, 79]. Работы в этом направлении особенно усилились после появления таких адсорбентов, как цеолиты [77]. Показано [71], что на цеолите СаА из бензола селективно извлекаются парафиновые углеводороды, в том числе н-гептан. Результаты очистки образца бензола с исходным содержанием н-гептана 0,18% и н-гексана 0,19% представлены на рис. 53. [c.234]

    Разделяющий агент должен образовывать азеотропные смеси со всеми насыщенными углеводородами, присутствующими в бензоле, и не образовывать их с самим бензолом. Если азеотропная смесь с бензолом все-таки образуется, то ее температура кипения должна быть выше температуры кипения азеотропных смесей с насыщенными углеводородами и ниже температуры кипения бензола. Метиловый спирт, рекомендовавшийся для разделения [87], образует азеотропные смеси не только со всеми насыщенными углеводородами, но и с бензолом, а незначительная разность температур кипения азеотропных смесей с бензолом (58,7 °С), н-гептаном (59,1 °С) и метилциклогексаном (59,5°С) не позволяет чет- [c.236]

    Разделение веществ с помощью мембран на основе обратимого осмоса нашло свое применение для нефтяных молекулярных растворов [5]. Существуют методики выделения л-ксило-ла из смесей с другими изомерами, разделения нормальных и разветвленных алканов и аренов. В качестве мембран можно использовать жидкие пленки, позволяющие разделять смеси гексан — бензол, гептан — толуол. [c.51]


    На рис. 9 приведены данные по адсорбционному равновесию для системы толуол — и-гептан на силикагеле при четырех температурах от 25 до 121° и при концентрациях, изменяюпщхся от 0,1 до 10 /О объемн. Зависимость коэффициента разделения а от равновесной концентрации при условии, что обо величины отложены в логарифмическом масштабе, для данной температуры выражается прямой линией [20]. Так как эти прямые линии при более низких концентрациях расходятся, то ясно, что влияние темпера- [c.146]

    Ориентация соединяющих линий играет ваншую роль при определении избирательности растворителя, как показано иа рис. 6 для системы, в которой растворителем является триэтиленгликоль, а углеводородными компонентами, подлежащими разделению, толуол и к-гептан. При добавлении растворителя к с.меси этих двух компоиентов состава AI получается система состава X. После встряхивания эта система разделяется на слой экстракта состава Т и слой рафината состава L, где Т ж L — концы соединяющей линии TL. Если отделить эти слои друг от друга и выделить из них растворитель путем отгонки или отмывки, то их состав определится прямыми пунктирными линиями АТЕ и ALR, проведенными непосредственно из вершины А, соответствующей чистому растворителю. Такие линии называются изологическими, т. е. линиями равного отношения, потому что отношение концентраций двух компонентов остается вдоль этих линий постоянным при введении или удалении третьего компонента. [c.169]

    Результатом списанного процесса является частичное разделение смеси состава М на экстракт состгва Е, обогащенный толуолом, и рафинат состава R, обогащенный гептаном. Вместо полного удаления растворителя можно ого частично удалить из Т или добавить к Т исходный продукт М, а также можно добавить растворитель к системе состава L, в результате чего получатся две новые двухслойные системы, в которых происходит дальнейшее разделение толуола и гептана. Эта повторная экстракция совершается почти автоматически и процессе экстракции с противотоком, результатом которого могкет быть почти полное разделение на чистый толуол и чистый гептан (при полном удалении растворителя). [c.169]

    При решении ИЗС в качестве возможных ТТО разделения используются следующие типовые технологические процессы ректификация, экстрактивная дистилляция фенолом, тетрагидрофураном и гексеном, экстракция бензолом, гептаном и изопропанолом, отдувка азотом, абсорбция эйкозаном и гексаметилбензолом. [c.295]

    Разумеется, для разделения близкокипящих компонентов и неидеальных смесей, не образующих азеотропа, можно подобрать ректификационные колонны эффективностью в 100 и более теоретических ступеней разделения, поскольку насадка с ВЭТС, равной 1—2 см, сейчас не является уже редкостью. Однако вместо применения колонн с 200 или даже 300 теоретическими ступенями разделения (относительная летучесть а = 1,03 — 1,02) такие смеси можно разделить, если воздействовать на фазовое равновесие в направлении повышения значений а и достижения более благоприятных условий разделения. В качестве примера рассмотрим экстрактивную ректификацию смеси близкокипящих компонентов н-гептан — метилциклогексан, для которых разность температур кипения составляет 2,7 °С (а = 1,075). При обычной ректификации с бесконечным флегмовым числом требуется 48 теоретических ступеней, чтобы сконцентрировать смесь от 15,3 до 95,4% (мол.). Если же в смесь добавить 70% (масс.) анилина, то такого же обогащения можно достигнуть при числе теоретических ступеней 12,4 и флегмовом числе V = 35. При этом относительная летучесть возрастает с 1,07 до 1,30 [35]. Если смесь является азеотропной, то чистые компоненты можно получить только с помощью селективного метода разделения. [c.301]

    Результаты получены при разделении смеси н-гептан—метилциклогексан в колонне с диаметром 24 и высотой разделяющей части 500 мм. Ректификацию пров )дилн с бесконечным флегмовым числом при атмосферном давлении. [c.408]

    Варяванди [126]. Эти насадки состоят преимущественно из элементов с габаритными размерами, не превышающими 3 мм, и обладают ВЭТС лежащей в пределах 1,5—2,5 см. Существенным преимуществом подобных насадок является незначительное уменьшение эффективности разделения с увеличением диаметра колонны. По данным Киршбаума [127] ВЭТС для слоя насадки длиной 1 м из сетчатых колец Рашига 3x3 мм без перегородки даже в колонне диаметром 100 мм находится в интервале 1,67—2,8 см при скорости потока пара 0,02—0,27 м/с (рис. 351). Кольца Рашига были изготовлены из однослойной бронзовой сетки. Опыты проводили с использованием смеси н-гептан—метилциклогексан при бесконечном флегмовом числе. [c.411]

    В ходе исследования динамики разделения смеси толуол- . гептан слоем цеолита NaX на лабораторной установке с отбором проб продукта по высоте колонны был экспериментально определен ряд значений длины зоны массопередачи. Аналитический расчет длины зоны массопередачи выполн шся по параметрам выходной кривой динамики адсорбции по семи вариантам уравнений. Три из них (уравнения Майкельса (1), Кехата-Розенкранца (2) и Самойлова-Фоминых (3)) являются по своей сущности феноменологическими, четыре носят детерминированный характер и учитывают изменение концентраций адсорбируемого компонента с учетом внешнедиффузионного и внутридиффузионного сопротивлений (4), а также допущения о низкой величине проскоковой концентрации (5), [c.229]

    Приведены примеры расчета длины зоны массопередачи по различным уравнениям и сопоставление результатов расчетов с опытными данными по экспериментальному фиксированию длины зоны массопередачи в процессе разделения смеси бензол - и. гептан в жидкой фазе цеолетами ЫаХ, а также масштабирования адсорбционных процессов. [c.31]

    С целью исследования особенностей разделения многокомпонентной смеси был проведен расчётный анализ ректификации эквимассовой четырехкомпонентной смеси гексан-гептан-октан-нонан. Расчёты разделения смеси выполнены модифицированным методом релаксации с учётом теплового взаимодействия потоков упругости насыщенных паров компонентов рассчитывались по уравнению Антуана. Составы продуктов разделения, полученные в результате расчета, приведены в таблице (вариант №1). [c.176]

    Асфальтены. Выделение асфальтеь ов нз сложных мпогокомпо-нентных систем (нефть, гудрон, битум) основан только ма их растворимости, и вследствие этого на выход и состав асфальтенов существенное влияние оказывают природа растворителя и условия разделения. Так, по данным Пфайфера, при обработке битума мексиканской нефти пентаном осаждается 33,5% (масс.) асфальтенов на битум, 2,2,4-триметилп(штаном (изооктаном) —32,2, гептаном — 25,7, нонаном — 23,6% (масс.), циклогексаном — 0. Поэтому Пфайфер рекомендует указывать не только содержание асфальтенов, но и растворитель, который использовался при их выделении, например асфальтены пентановые, асфальтены гепта-новые, асфальтены петролейные. [c.210]

    Основными представителями смолистых веществ в нефтях являются смолы и асфальтены, различающиеся по внешнему виду и растворимости. Смолы — коричневое полужидкое вещество, растворимое во всех нефтепродуктах и не растворимое в спирте асфальтены — темный аморфный порошок, растворимый в бензоле и не растворид1ый в легком бензине. Разделение смол и асфальтенов основано на их различной растворимости асфальтены осаждают, многократно разбавив навеску легким бензином (лишенным ароматических углеводородов), н-гептаном и подобными растворителями смолы при этом остаются в растворе, из которого могут быть выделены посредством адсорбента (силикагеля). Эти смолы называют снликагелевыми. [c.62]

    По результатам исследований Н. Ф. Грищенко с авторами [41, с. 319—328], при разделении смеси н-гептан — толуол наиболее селективными растворителями оказались сульфолан, этилпирроли-дон и пропиленкарбонат, а при разделении н-нонапа и о-ксилола — сульфолан и пропиленкарбонат [42]. Высокой емкостью и селективностью обладают также диметилформамид, фурфурол и нитрометан [43], однако практическое применение их для выделения ароматических углеводородов g — g затруднено, так как температуры кипения этих растворителей находятся в пределах кипения бензиновых фракций. [c.51]

Рис. 2.15. Зависимость селективности систёмы в-гептан — о-ксилол от концентрации ароматического углеводорода в экстракте при разделении смеси диэтиленгликолем при 150 °С. Рис. 2.15. <a href="/info/40431">Зависимость селективности</a> систёмы в-гептан — о-ксилол от концентрации <a href="/info/7163">ароматического углеводорода</a> в экстракте при <a href="/info/190748">разделении смеси</a> диэтиленгликолем при 150 °С.
    Первые успешные работы по разделению нефтяных фракций адсорбционной хроматографией на силикагеле показали эффективность этого метода для удаления аренов из бензиновой и керосиновой фракций [71], и для маслянь1х фракций и гудронов [72]. В последней работе удалось достаточно четко разделить масляную фракцию нафталанской нефти и получить деаромати-зированные фракции, арены с различным средним числом циклов в молекулах от 2 до 3,5 и смолы. В качестве растворителей и десорбентов углеводородов использовались петролейный эфир или индивидуальные углеводороды (изопентан, гептан, изооктан), а смолы десорбировали метилэтилкетоном или ацетоном. [c.60]

    Окончательная ректификация продуктов, полученных при гидроочистке. Глап-1 ой . дностью ректификации зтих продуктов оказывается отделение бензола о н ценных углеводородов. Практически невозможно отделение его от цикло- ексаиа ректификацией (температура кипения 81 °С). Трудно также отделить бензол от метилциклогексана и н-гептана. Эти соединения не образуют с бензолом азеотропных смесей, но системы "бензол-метилциклогексан" и "бензол-н-гептан" не подчиняются закону Рауля и коэффициент относительной летучести бензола уменьшается по мере увеличения содержания последнего в смеси. Для разделения названных продуктов ректификацией требуются колонны эффективностью 50—70 практических тарелок против 30—40 при обычной ректификации. Применение высокотемпературной гидроочистки снимает все проблемы, связанные с трудностями получения высокочистого бензола. [c.314]


Смотреть страницы где упоминается термин Гептаны, разделение: [c.230]    [c.471]    [c.257]    [c.142]    [c.96]    [c.199]    [c.42]    [c.57]    [c.84]    [c.121]    [c.141]    [c.319]    [c.244]    [c.106]    [c.184]    [c.28]   
Основы технологии нефтехимического синтеза Издание 2 (1982) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Гептан

Гептанал



© 2024 chem21.info Реклама на сайте