Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литийорганические соединения

    В 1948 г. во ВНИИСК под руководством А. А. Короткова были возобновлены начатые еще до войны на Опытном заводе литер Б работы по полимеризации изопрена литием и его органическими соединениями. В ходе исследования было установлено, что вещества, образующие с литийорганическими соединениями комплексы донорно-акцепторного типа, изменяют стереоселективность катализатора. Особенно существенным было влияние эфиров, даже очень малые количества которых значительно повышали долю реакций присоединения молекул изопрена в 1,2- и [c.11]


    В последнее время для синтеза новых каучукоподобных полимеров вновь стали находить применение литийорганические соединения. В связи с тем, что полимеризация под их влиянием протекает по механизму живых цепей, литийорганические соединения использованы для промышленного получения бутадиен-стирольных блоксополимеров —термоэластопластов, содержащих гибкую бутадиеновую часть цепи, состоящую в основном из 1,4-звеньев, и стирольные блоки по концам цепи. [c.13]

    Литийорганические соединения в комбинации с алкоксидами других щелочных металлов использованы для получения статистического бутадиен-стирольного каучука полимеризацией в углеводородных растворах. [c.13]

    Полимеры изопрена и бутадиена и сополимеры бутадиена со стиролом, полученные под влиянием литийорганических соединений. Механизм анионной полимеризации различных мономеров в присутствии литийорганических соединений описан в [4]. [c.56]

    Дальнейшие работы [2] показали, что вещества, образующие с литийорганическими соединениями комплексы донорно-акцепторного типа, снижают стереоселективность катализатора. Поэтому лишь в 1949 г. после того, как были разработаны способы тонкой очистки мономера, удалось получить синтетический полиизопрен (СКИ), приближающийся по свойствам к НК, в условиях опытно-промышленного производства. [c.200]

    Важнейшим фактором, влияющим на направление реакций полимеризации изопрена под влиянием литийорганических соединений, является чистота мономера и углеводородного растворителя. Вещества электронодонорного характера даже в очень малых количествах снижают стереоселективность действия катализатора, а при проведении полимеризации в среде электронодоноров в полиизопрене отсутствуют цмс-1,4-звенья (табл. 3). [c.209]

    Микроструктура полиизопренов практически не зависит от природы алкила в литийорганическом соединении, но последняя в значительной степени определяет кинетические параметры полимеризации. Скорость реакций инициирования в углеводородных растворителях уменьшается в ряду  [c.210]

    Синтез сополимеров бутадиена и стирола с контролируемым содержанием полистирольных блоков, которые находят широкое применение в производстве резиновой обуви и резинотехнических изделий, осуществляется на обычном оборудовании в присутствии литийорганических соединений чаще н- или втор-бутиллития, а [c.277]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]


    Так как при полимеризации на металлическом литии в неполярной среде скорость инициирования чрезвычайно мала, а скорость реакции обмена достаточно велика, в системе содержится очень мало свободных литийорганических соединений и в области низких молекулярных масс степень полимеризации Р определяется формулой  [c.415]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]

    Применение катализаторов на основе металлов переменной валентности в некоторых случаях не позволяет полностью удалить из каучуков остатки катализатора, что может привести к значительному снижению стабильности каучука. С этой точки зрения синтез стереорегулярных каучуков с применением литийорганических соединений обеспечивает получение более стабильных полимеров, чем с применением катализаторов на основе кобальта, титана, ванадия. [c.628]

    Так же бурно литийорганические соединения реагируют с кислотами, давая углеводороды  [c.197]

    Литийорганические соединения при взаимодействии с СО, или карбоновыми кислотами образуют кетоны  [c.197]

    Альдегиды и кетоны активно реагируют с литийорганическими соединениями по карбонильной группе  [c.197]

    Вследствие этого третичные спирты с очень разветвленными радикалами, например (30) или (31), можно получать из соответствующих кетонов только с по.мощью более активных нуклеофилов натрий- или литийорганических соединений, в которых степень ионности связи углерод—металл выше, чем у магнийорганических соединений. [c.280]

    Для лития наиболее характерно образование ионной связи. Поэтому координационное число в соединениях в отличие от остальных элементов 2-го периода больше 4. Вместе с тем вследствие небольшого размера ион лития характеризуется высокой энергией сольватации, а в литийорганических соединениях литий образует ковалентную связь. [c.587]

    Напишите уравнения реакций литийорганических соединений (см. задачу 910) с водой, этиловым спиртом и хлороводородом. [c.103]

    Другое ограничение синтезов Гриньяра состоит в реакции вторичных гриньяровских реактивов с тормозящими кетонами. При такой комбинации выходы обычно очень малы, поэтому эта реакция не подходит. В подобных случаях соответствующие литийорганические соединения дают эначительно лучшие результаты, чем реактив Гриньяра. Указанные структурные особенности оказывают влияние на реакции со сложными эфирами и альдегидами (табл. 1) [32]. [c.505]

    До недавнего времени, ввиду йт yt tвий прямых экспериментальных данных о природе и строении активных центров, не было четких представлений о механизме действия литийорганических инициаторов. Этому в значительной мере также препятствовала большая сложность изучаемых систем, связанная в первую очередь с ассоциацией литийорганических соединений и растущих полимерных цепей. Рассмотренные различными авторами механизмы анионной полимеризации диенов в большей или меньшей степени объясняли только кинетические закономерности процесса, не давая каких-либо приемлемых представлений об элементарных актах формирования звеньев полимерной цепи [87]. [c.128]

    На соотношение структур (XV—XVIII) активных центров, приводящих к формированию различных звеньев полимерной цепи (цис-1,4-, транс-, 4-, 1,2-), по-видимому, оказывает существенное влияние ассоциация, которая уменьшается при понижении концентрации литийорганического соединения. [c.129]

    При взаимодействии изопрена с литийорганическими соединениями, по данным Мортона с сотрудниками [90], концевое звено живущего полиизопрениллития в углеводородной среде имеет главным образом 4,1-структуру с ковалентной связью углерод — литий. Как и в случае бутадиена, в реакционной среде обнаружено [c.129]

    Наибольшей специфичностью в отношении образования 1,4-звеньев (и с-1,4-звеньев) обладает литий и его органические производные. Б углеводородных средах связь углерод — литий является в значительной степени ковалентной. Электронодефицит-ность лития, с одной стороны, открывает возможность образования координационных комплексов с молекулами, имеющими повышенную электронную плотность (в том числе, с молекулами бутадиена), а с другой стороны, приводит к тому, что литийорганические соединения в растворе сильно ассоциированы. Экспериментально установлено, что при полимеризации диенов скорость инициирования пропорциональна концентрации литийалкила в степени а скорость роста цепи — в степени Это [c.179]


    Полимеризация в растворе. Как уже отмечалось (стр. 181), промышленные способы получения полнбутадиена в растворе базируются на использовании литийорганических соединений или ионно-координационных систем, содержащих металлы переменной валентности (титан, кобальт и никель). Технологическое оформление этих процессов включает следующие основные стадии 1) очистка мономера и растворителя 2) приготовление шихты (смесь бутадиена с растворителем) 3) полимеризация 4) дезактивация катализатора и введение антиоксиданта 5) отмывка раствора полимера от остатков катализатора 6) выделение полимера из раствора 7) сушка и упаковка каучука. [c.184]

    При получении полнбутадиена в присутствии литийорганических соединений отгонка растворителя может осуществляться также и безводным способом с использованием герметичных вальцов, [c.185]

    Бутадиеновые каучуки, получаемые в растворе. К этой группе каучуков относятся статистический СКДЛ, получаемый в присутствии литийорганических соединений, и стереорегулярные ц с-1,4-полибутадиены, образующиеся под влиянием титановых, кобальтовых и никелевых каталитических систем (СКД, СКД-2, СКД-3). Эти каучуки имеют различные молекулярные параметры, в связи с этим они отличаются реологическими характеристиками, стойкостью к термомеханической деструкции, морозостойкостью и некоторыми другими свойствами вулканизатов. [c.187]

    Полимеризация изопрена под влиянием литийорганических инициаторов. Алкильные производные лития в углеводородных растворах находятся в виде ассоциатов гексамер н-бутиллития [28], тетрамеры втор- и грег-бутиллития [29]. Полимерные литийорганические соединения в неполярных средах также ассоциированы либо друг с другом, либо с молекулами инициатора. Считается, что реакция роста осуществляется при взаимодействии мономеров с активным цевтром, имеющим меньшую степень ассоциации, чем инициатор. Об этом свидетельствует выражение для скорости реакции роста Vp  [c.209]

    Практическое значение может иметь модификация каучуков СКИЛ или 1К-305, получаемых в растворе с применением литийорганических соединений. Несмотря на меньшую стереорегулярность (90—92% 1,4-звеньев), после введения гидроксильных групп наполненные смеси на основе СКИЛМ (или Ш-305) приобретают высокую когезионную прочность (см. рис. 3), что позволяет предполагать возникновение у сажевых смесей из модифицированного СКИЛМ при растяжении определенной упорядоченности. [c.233]

    В целом ряде работ приводятся констааты сополимеризации бутадиена и стирола в присутствии литийорганических соединений. Значения констант колеблются в широких пределах (табл. 1). [c.270]

    Соединения типа МеОН и литийорганические соединения образуют комплексы [32—34], точная стехиометрия которых неизвестна. По-видимому, существует таутомерное динамическое равновесие между связью С—Ме и О—Ме, которое приводит к совершенно другим центрам роста, отличным от одного алкиллития  [c.275]

    Комплекс Ь1А1РзМА1РзЫ не вызывает процесса полимеризации, а представляет собой регулятор молекулярной массы. Процесс инициирования заканчивается после полного исчезновения алюминийалкила по реакции (6) и образования некоторого избытка литийорганического соединения по реакции (7). Литийорга-ническое соединение после присоединения нескольких молекул мономера десорбируется с поверхности металла и переходит в [c.275]

    Независимо от метода получения и от природы катализатора силоксановые каучуки имеют, как правило, широкое ММР с коэффициентом полидисперсности MjMn от 3 до 8. При равновесной анионной полимеризации Д4 в присутствии регуляторов молекулярной массы MjMn у ПДМС снижается до 2,6—3,0 [52], а полимеры с более узким ММР получены полимеризацией циклосилоксанов литийорганическими соединениями [55]. [c.484]

    В строгом смысле слова термин реакция Гриньяра подразу мевает использование магнийорганпческих реагентов. По типу реакций Гриньяра реагируют также литийорганические соединения. Поэтому в синтетическом смысле эти два типа реагентов эквивалентны. [c.86]

    Эквивалентами карбаииолов ири такой ра )борке могут служить, например, реагенты Грипьяра нли литийорганические соединения, а карбкатионов — альдегиды или кетоны (при синтезе спиртов, как на схеме), производные карбоновых кислот (при синтезе кетонов) или СО2 (при синтезе карбоновых кислот). [c.97]

    Следуя той же логике рассуждений, мы приходим к выводу, что образование литийорганических соединений или реактивов Гриньяра при действии металлов (восстановителей) на алкилгалогениды есть неизогинсическая восстановительная реакция, при которой субстраты с уровнем окисления 1 восстанавливаются до соединений с уровнем окисления О, отвечающим насыщенным углеводородам 2 . [c.106]

    Литийорганические соединения можно получать обменшой реакцией н-бутиллития углеводородами и с алкил- или арилгалогенидами в безводном растворителе  [c.196]

    Будут ш чрезвычайно реакционноспособньши, литийорганические соединения широко используются в органическом симтезе, проявляя большую схожесть с поведением магнийорганических соединений. Приведем некоторые реакции производных лития. [c.196]

    Литийорганические соединения активно взаимодействуют с водой, образуя соответствующие yгл( вoдopo l ы  [c.196]

    В экзоэдральных соединениях Сбо Ь1 и 6o Na, расположение атома металла напротив центров пяти- или шестичленного кольца более благоприятно, чем над атомами углерода. Эффективный заряд на атоме лития в 6o Li близок к нулю, заселенности его 2s и 2р атомных орбиталей (АО) приближаются к 0,25. Следовательно, распределение эффективных зарядов в молекуле определяется не только передачей 2s электрона от лития к фуллерену как акцептору, но и обратной подачей электронной плотности с 2p АО углеродов С ) на вакантные 2р АО металла. В результате связь литий - фуллерен должна иметь существенный вклад ковалентной составляющей, что характерно для литийорганических соединений в отличие от органических комплексов других щелочных металлов. [c.86]

    Благодаря меньшей реакционной способности по сравнению с другими щелочноорганическими соединениями литийорганические соединения более удобны в работе. Они более реакционноспособны по сравнению с реактивами Гриньяра и могут быть использованы тогда, когда магнийорганические в реакцию не вступают, например в синтезе пространственно затрудненных углеводородов и их производных. Однако высокая чувствительность литийорганических соединений к кислороду и влаге воздуха затрудняет их практическое применение, так как реакции с их участием необходимо вести в атмосфере инертного газа (аргон, очищенный от кислорода азот). [c.208]


Смотреть страницы где упоминается термин Литийорганические соединения: [c.423]    [c.179]    [c.435]    [c.132]    [c.196]    [c.197]    [c.198]    [c.620]    [c.208]    [c.174]    [c.103]   
Смотреть главы в:

Основы органической химии. Ч.2 -> Литийорганические соединения

Реакции органических соединений -> Литийорганические соединения

Путеводитель по органическому синтезу  -> Литийорганические соединения

Современная неорганическая химия Часть 2 -> Литийорганические соединения

Упражнения по курсу органической химии -> Литийорганические соединения

Основы органической химии -> Литийорганические соединения

Химия органических соединений фтора -> Литийорганические соединения


Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.242 ]

Успехи органической химии Том 2 (1964) -- [ c.2 ]

Органическая химия (1974) -- [ c.805 , c.806 , c.1026 ]

Общая органическая химия Т.7 (1984) -- [ c.8 , c.31 ]

Курс современной органической химии (1999) -- [ c.575 ]

Органическая химия (1979) -- [ c.537 , c.538 ]

Гетероциклические соединения Т.4 (1955) -- [ c.175 ]

Гетероциклические соединения, Том 4 (1955) -- [ c.175 ]

Органическая химия Том1 (2004) -- [ c.137 ]

Органическая химия (1964) -- [ c.0 ]

Общий практикум по органической химии (1965) -- [ c.259 , c.493 ]

Теоретические проблемы органической химии (1956) -- [ c.285 ]

Основы органической химии (1968) -- [ c.324 , c.325 ]

Органическая химия Том 1 перевод с английского (1966) -- [ c.320 ]

Основные начала органической химии том 1 (1963) -- [ c.340 , c.342 , c.349 ]

Основы органической химии (1983) -- [ c.135 ]

Путеводитель по органическому синтезу (1985) -- [ c.58 ]

Методы эксперимента в органической химии Часть 2 (1950) -- [ c.643 ]

Современная неорганическая химия Часть 3 (1969) -- [ c.2 , c.64 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.396 ]

Основы органической химии Часть 1 (1968) -- [ c.324 , c.325 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.314 ]

Органическая химия (1972) -- [ c.327 ]

Основы химии карбанионов (1967) -- [ c.0 ]

Акриловые полимеры (1969) -- [ c.105 ]

Органическая химия (1972) -- [ c.327 ]

Органическая химия Издание 2 (1976) -- [ c.335 , c.336 ]

Органическая химия Издание 3 (1980) -- [ c.308 ]

Новые воззрения в органической химии (1960) -- [ c.501 ]

Химия органических соединений бора (1965) -- [ c.84 ]

Теоретические основы органической химии (1973) -- [ c.843 , c.844 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]

Органическая химия (1964) -- [ c.0 ]

Гетерогенный катализ в органической химии (1962) -- [ c.0 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.78 , c.401 ]

Начала органической химии Кн 2 Издание 2 (1974) -- [ c.348 , c.354 ]

Начала органической химии Книга 2 (1970) -- [ c.380 , c.382 , c.389 ]

Курс физической органический химии (1972) -- [ c.378 ]

Химия тииранов (1978) -- [ c.226 , c.284 , c.291 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.557 ]




ПОИСК





Смотрите так же термины и статьи:

Литийорганические соединени



© 2025 chem21.info Реклама на сайте