Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомная орбиталь валентная

    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]


    Для лучшего соответствия опытным данным необходимо ввести допущения об участии в химической связи атомов в возбужденном состоянии и о гибридизации атомных орбиталей. Изложенная здесь концепция метода валентных связей обладает определенной. стройностью и наглядностью. [c.57]

    Пример. С помощью метода валентных связей определите тип гибридизации атомных орбиталей центрального атома в следующих комплексных ионах  [c.88]

    В 45 было показано, что при взаи.модействин двух одинаковых атомов вместо двух энергетически равноценных исходных атомных орбиталей образуются две молекулярные орбитали, отвечающие различным уровням энергии (рнс. 45), Если взаимодействуют три атома, причем их валентные орбитали заметно перекрываются, то возникают не две, а три молекулярные орбитали, в равной степени принадлежащие всем трем атомам (д е л о к а-лизованные орбитали) н характеризующиеся треми различными значения.ми энергии. При последовательном увеличении числа взаимодействующих атомов добавление каждого из них приводит к образованию еще одного энергетического уровня н к дальнейшей делокализации молекулярных орбиталей (т. е. к распространению их на большее число атомов) общее число энергетических уровней будет при этом равно числу взаимодействующих атомов. Схема подобного проиесса представлена на рис. 135. [c.531]

    Более совершенную модель металлической связи позволяет создать теория молекулярных орбиталей. Согласно этой модели, весь кристалл металла следует рассматривать как одну гигантскую молекулу. Все атомные орбитали определенного типа взаимодействуют в кристалле, образуя совокупность делокализованных орбиталей, простирающихся по всему кристаллу. Число валентных атомных орбиталей в отдельном кристалле достигает 10 . Чтобы представить себе, как происходит взаимодействие столь большого числа валентных орбиталей, рассмотрим гипотетическую последовательность линейных молекул лития, Ыг, з, в которых основную роль играют валентные 25-орбитали. На рис. 14-24 показано образование молекулярных орбиталей для трех указанных молекул. Отметим, что вследствие делокализации молекулярных орбиталей ни одному из электронов не приходится располагаться на разрыхляющей орбитали. По мере удлинения цепочки атомов в молекуле расстояние между орбитальными энергетическими уровнями все более сокращается. В предельном случае для кристалла, состоящего из 10 атомов, комбинация атомных орбита-лей приводит к возникновению широкой полосы, или, как говорят, зоны, тесно расположенных энергетических уровней. [c.625]


    Орбитали энергетической зоны заполняются двумя электронами, как и орбитали атома и молекулы, в порядке их расположения по энергиям и в соответствии с принципом Паули. Следовательно, максимально возможное число электронов в зонах, возникающих за 1 чет перекрывания s-, р-, d-, /-... атомных орбиталей, соответственно равно 2N (s-зона), 6N (р-зона), 10 N (/ -зона), 14 N (/-зона)... Зона, которую занимают электроны, осуществляющие связь, называется валентной (на рис. 75 степень заполнения валентной зоны показана штриховкой). Свободная зона, расположенная энергетически выше валентной, называется зоной проводимости. [c.116]

    Первый этап исследования заключается в построении молекулярных орбиталей. Для этого воспользуемся валентными 2s- и 2р-орбиталями каждого из двух атомов молекулы. На рис. 12-6 схематически изображены их энергетические уровни, а на рис. 12-7 показаны типы различных молекулярных орбиталей, образованных комбинациями этих атомных орбиталей. [c.520]

    При образовании молекулы аммиака также происходит хр -гиб-ридизация атомных орбиталей центрального атома (азота). Именно поэтому валентный угол НЫН (107,8°) близок к тетраэдрическому. Небольшое отличие этого угла от 109,5° объясняется, как и в молекуле воды, асимметрией в распределении электронных облаков вокруг ядра атома азота из четырех электронных пар три участвуют в образовании связей N—Н, а одна остается неподеленной. [c.139]

    В некоторых случаях молекулярные орбитали образуются не из двух, а из нескольких атомных орбиталей. Так, в молекуле бензола шесть р-электронов образуют шесть молекулярных орбиталей, которые составляют единую систему и не могут рассматриваться как три пары орбиталей. Именно эта единая система из шести электронов обусловливает особые ароматические свойства бензола и его производных. Такие системы молекуляр[1ых орбиталей называют многоцентровыми. В молекуле ВаН шесть валентных электронов двух атомов В и шесть валентных электронов шести атомов Н обеспечивают соединение 8 атомов, т. е. образование 7 связей. [c.11]

    Для объяснения большинства соединений, в которых число валентных электронов не меньше числа валентных орбиталей, достаточно воспользоваться представлением о двухатомных химических связях, которое позволяет рассматривать одновременно только пары атомов. Однако, как мы уже знаем из обсуждения бензола (разд. 13-5), локализованные молекулярные орбитали являются лишь приближенным описанием того, что имеет место в действительности. Иногда приходится конструировать делокализованные молекулярные орбитали из атомных орбиталей, принадлежащих нескольким или даже всем атомам молекулы. В случае молекулы бензола можно рассматривать раздельно связи С—Н и а-связи С—С, но шесть р-орбиталей атомов углерода приходится рассматривать совместно. [c.272]

    Приведите схему электронного строения бутадиена-1,3, пользуясь граничными поверхностями атомных орбиталей. Укажите, в чем заключается сущность эффекта сопряжения. В каком валентном состоянии находятся атомы углерода в молекуле бутадиена-1,3 Что является характерным для этого состояния  [c.37]

    Наполовину заполненная атомная -орбиталь с неспаренным электроном действует как свободная валентность и благоприятствует реакции с радикалами (частицами с неспаренными электронами), полученными путем гомеополярного разрыва ординарной связи или в результате возбужденного состояния двойной связи  [c.35]

    При образовании максимального числа а-связей (и отсутствии гс-связей) для всех указанных состояний азота характерна р -гибридизация атомных орбиталей, причем каждая неподелен-иая пара занимает одну гибридную орбиталь. Формирование наряду с о-свя зями л-связей обусловливает другие типы гибридизации— 5р -(эдна я-связь) или зр (две я-связи). В валентном электронном слое атома азота нет -орбиталей, поэтому атом азота ие может образовать более четырех ковалентных связей. [c.394]

    При расчете эффективного поля, созданного электронами и ядрами системы, приходится решать многоцентровую проблему, представляющую большие математические трудности. Поэтому для практического решения задачи необходимо ввести упрощения. Предполагается, что большинство электронов не участвует в образовании молекулярной орбитали, а локализованы вблизи отдельных ядер. В образовании молекулярных орбиталей участвуют лишь внешние валентные или часть валентных электронов. Волновая функция молекулярной орбитали представляется в виде линейной комбинации атомных орбиталей (приближение МО ЛКАО). [c.49]

    Направленность валентности определяется ортогональностью атомных орбиталей центрального атома, участвующего в образовании связи, например, р - и ру- АО кислорода взаимно перпендикулярны. [c.57]

    Рассмотрим молекулу метана — простейшего органического соединения. Атом С находится в центре тетраэдра, атомы Н — в вершинах последнего. Все расстояния С—Н одинаковы, углы НСН равны 109 28. Для метана, как и для воды, молекулярные орбитали многоцентровые. Если записать их как линейные комбинации атомных орбиталей, надо учесть четыре 15-АО водородных атомов д, 5в, 5с и о и четыре внешние орбитали атома углерода 2 , 2р , 2ру и 2р , всего восемь АО (1 -электроны углерода сохраняют атомный характер). Молекулярных орбиталей образуется также восемь четыре связывающих, на которых в основном состоянии молекулы разместятся восемь валентных электронов и четыре разрыхляющие, свободные от электронов. Это обеспечивает высокую стабильность молекулы СН4. Все восемь молекулярных орбиталей метана можно изобразить одной формулой (для упрощения опустим коэффициенты при АО)  [c.99]


    Согласно теории валентных связей к комплексным соединениям относятся соединения с так называемыми донорно-акцепторными и дативными связями. Донорно-акцепторной связью называется парная связь, делокализованная в одной плоскости, когда оба электрона для ее образования поставляются лигандом (донором), а металл выступает в качестве акцептора этой электронной пары, участвуя в связи своими пустыми атомными орбиталями. [c.44]

    Орбитали 0,, 02 воплощают идею о взаимодействии каждого валентного электрона в атоме бериллия с соответствующим ls-электроном в атоме водорода. Выбор угла а и был продиктован этими соображениями. При этом оказьшается, что локализованные на связях Ве—Н молекулярные орбитали со,, 02 представляют собой линейную комбинацию s—p гибридизованных атомных орбиталей бериллия и ls-вол-новых функций атома водорода. Такая конструкция МО напоминает соответствующее выражение (4.23) для LiH. На этом примере можно проследить возникновение понятия о валентном состоянии атома в пределах заданной молекулярной структуры. Первоначально это понятие было введено в квантовую химию в качестве априорного предполагалось, что проигрыш в энергии, связанный с возбуждением 2s 2р атома бериллия, будет в дальнейшем скомпенсирован вьшгрышем в энергии при формировании в данном примере двух химических связей Ве-Н. Отметим, что замена в определителе Слейтера орбиталей 2og, 1а их линейной комбинацией со,, 602 является вполне корректным преобразованием, переход же от со,, СО2 к со,, С02 представляет собой уже некоторую аппроксимацию. В литературе подробно изложено построение sp -и sp -гибридизованных орбиталей см. [9], [12], [20]. [c.229]

    Ковалентные химические связи между однотипными или различными атомами обусловлены наиболее удаленными от центра, или валентными, электронами. Когда говорят об электронах, следует, пожалуй, подразумевать электронные облака, т. е. плотность распределения электронов. Радиальное и угловое распределение плотности электронов описывается одноэлектронными волновыми функциями Ч , называемыми также атомными орбиталями, которые получают путем решения квантово-механического уравнения Шредингера  [c.95]

    Приведите характеристику третьего валентного состояния атома углерода. С помош ью атомных орбиталей изобразите строение молекулы ацетилена. [c.31]

    Решение. Запишем электронную формулу В ls 2s 2p. Как видно, в нормальном состоянии атом бора содержит один неспаренный электрон. В то же время бор находится в третьей группе периодической системы элементов и способен проявлять в соединениях валентность, равную трем, т. е. может образовать три химические связи. Это становится возможным при энергетическом возбуждении атома В, которое происходит при взаимодействии с атомами Р, когда один 5-электрон переходит на свободный /3-подуровень. Так как все три связи в ВРз равноценны, происходит смешивание, гибридизация атомных орбиталей с образованием трех энергетически равноценных хр -орбиталей, которые взаимодействуют с р-орбиталями атомов фтора  [c.30]

    Написать электронную формулу азота и распределение его валентных электронов по атомным орбиталям. Обосновать возникновение высшей степени окисления азота -+5. [c.79]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Как показали конкретные численные расчеты множества молекул, все эти критерии локализации приводят к весьма близким результатам, которые кратко сводятся к следующим. Орбитали действительно получаются локализованными, относясь в основном к одному, двум либо трем центрам для соседних (ближайших по межъя-дерному расстоянию) центров такие локализованные орбитали могут быть соотнесены со связевыми орбиталями, в которых с максимальными весами фигурируют атомные орбитали двух соседних центров, с остовными атомными орбиталями и с орбиталями неподелен-ных пар, т.е. гибридными орбиталями, образованными атомными орбиталями валентных оболочек атома. Для ненасыщенных соединений, например алкенов, двойной связи отвечают две эквивалентные (или почти эквивалентные) локализованные орбитали (см. рис. 7.3.1), представляющие собой линейную комбинацию а- и л -орбита-лей того локализованного фрагмента молекулы, который включает двойную связь тройной связи отвечают три локализованные и экви- [c.359]

    Метод МО оказался полезным не только для описания молекул, но и агрегатов — например твердых тел. Б. Блох применил приближенный метод полностью делокализованных, простирающихся на весь металл МО, как линейных комбинаций атомных орбиталей валентных электронов всех атомов. Как правило, энергия передается в методе МО плохо. Причина состоит в том, что нужно лучше знать энергию корреляции, особенно энергию взаимного избегания электронов. С помощью привлечения мощных электронно-вычислительных машин в последнее время рассчитаны такие молекулы, как пиридин, пиррол, бензол, аммиак, распределение электронной плотности в случае водородной связи (Н — bond). Метод МО лучше, чем метод валентных схем, передает делокализованные сопряженные. связи в молекулах. [c.94]

    Выше мы изложили традиционные квантовохимические представления о гибридизации атомных орбиталей на традиционных примерах (СО2, НС СН, Н2С==СН2, СН4, ВРз и т. д.). Однако эти представления, которые по праву можно назвать классическими, в ряде случаев оказываются неприменимыми. Одним из таких случаев является молекула 1,б-дикарба-/сло-зо-гексаборана (рис. 36), где четырех валентных АО углерода недостаточно для построения пяти ортогональных ГАО. Однако при отказе от требования ортогональности, как было показано С. Г. Семеновым, удается построить линейно-зависимый набор неорто-гональных ЛМО, преобразующихся друг в друга при операциях симметрии Оц1- Эти 15 ЛМО (6 двухцентровых, локализованных на связях СН и ВН 8 трехцентровых, локализованных на связях СВг и одна четырехцентровая, тождественная канонической 1 2г-М0, охватывающей атомы бора) с электронными заселенностями 2, не могут быть переведены унитарным преобразованием в исходные 13 канонических МО (сравни с рассмотренным выше случаем молекулы метана). [c.216]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Литий. Атом лития имеет один валентный электрон, поэтому молекула может иметь не больше двух связывающих электронов. Эти электроны спарены на низшей доступной для них молекулярной орбитали, о,. Следовательно, в молекуле Li2 имеется одна ковалентная связь. Длина этой связи (2,67 А) превышает длину связи в молекуле Н2 (0,74 А), потому что в молекуле лития связь образуется более протяженными атомными орбиталями сп = 2, анесп = 1. По этой же причине связь в слабее, чем в Н2 энергия связи в 2 равна ПО кДж мoль , а в Н2-432 кДж моль Ч Ядра атомов лития расположены дальше друг от друга, электронное облако распределено в большем объеме и силы притяжения между электронами и ядрами соответственно ослаблены. [c.525]

    Теория молекулярных орбиталей позволяет дать и другое объяснение двойной связи в этилене оно основано на представлении о sp -гибридиза-ции валентных орбиталей атомов углерода. Согласно этой модели, две из четырех sp -орбиталей каждого атома углерода перекрываются с двумя аналогичными орбиталями другого атома углерода. В этом случае два углеродных тетраэдра имеют общее ребро, подобно тому как это было описано ранее для. BjHg (см, рис. 13-9). Однако суммарное перекрывание атомных орбиталей в рамках этой модели оказывается меньшим, чем в рамках модели с sp -гибридизацией, откуда следует, что связь должна быть не столь прочной. Кроме того, тетраэдрическая модель с двумя изогнутыми связями предсказывает, что угол Н—С—Н ближе к тетраэдрическому значению 109,5°, чем к значению 120°, основанному на представлении о хр -гибридизации. Экспериментально наблюдаемое значение этого угла (117°) свидетельствует в пользу модели двойной связи, изображенной на рис. 13-19, а не в пользу модели с изогнутыми связями, основанной на представлении о sp -гибридных орбиталях углерода. [c.568]

    Был исследован [9] МБ-спектр нитропруссида натрия Na2Fe( N)5NO. Поскольку этот комплекс диамагнитен, его рассматривали ранее как содержащий железо(П) и N0 . МБ-спектр представляет собой дублет с AEQ и 6, равными соответственно 1,76 и —0,165 мм/с. Сопоставление последней величины с опубликованными результатами [8] для ряда комплексов железа позволило заключить, что она близка к величине 6 железа(1У). МБ-спектр и магнетизм согласуются со структурой, в которой имеет место интенсивное л-связывание неспаренного электрона на совокупности 2 -орбиталей железа с неспаренным электроном азота, как это показано на рис. 15.8. Для возникновения железа (IV) в заполненную связывающую я-орбиталь должна давать большой вклад атомная орбиталь азота, а в вакантную разрыхляющую я-орбиталь — атомная орбиталь железа. Поскольку экранирование -электронов -электронами снижается, на азоте должна локализоваться большая я-электронная плотность, а величина 5 железа должна приближаться к величине 5 железа (IV). Так как электронная плотность находится там, где ранее была разрыхляющая я-орбиталь окиси азота, наблюдается снижение частоты валентного колебания N — О в инфракрас- [c.300]

    Сравнительно недавно [27] были получены спектры РФС газообразных веществ, ранее исследуемых методом УФС. Полученные интересные результаты основаны на относительных поперечных сечениях фотоионизащ1и валентных электронов в зависимости от энергии источника. Например, для рентгеновского излучения с больщей энергией электроны на молекулярной орбитали, составленной главным образом из атомных 5-орбиталей, имеют более высокое относительное поперечное сечение (и, следовательно, большую интенсивность спектральной линии), чем электроны на молекулярной орбитали, составленной в основном из атомных 2р-орбиталей. Сопоставление спектров РФС и УФС указывает на различные относительные интенсивности соответствующих пиков. Пик, обусловленный электронами на молекулярных орбиталях, составленных главным образом из атомных орбиталей 5-типа, имеет большую относительную интенсивность в спектре РФС, чем в спектре УФС. [c.340]

    Данные методы, полученные с их помощью результаты и объяснения некоторых расхождений между численными результатами рассмотрены, например, Зауэром и Вудвордом [9]. Несколько ранее Будро [11] попытался непосредственно рассчитать полную (электронную) энергию (цепи ПЭ) в зависимости от формы атомов. С помощью своих расчетов молекулярных орбиталей методом самосогласованного поля (МО—ССП) он получил необходимый набор чисел, которые при использовании их в качестве коэффициентов расчета соответствующих атомных орбиталей позволяют оценить приближение к волновой функции и минимизировать полную энергию . Хан и др. [14] в настоящее время исследуют модель, в основе которой лежит упругое взаимодействие, по существу, жестких валентных 5р -орбиталей, имеющих выступы с четырех сторон (оболо-чечная модель). [c.127]

    Тройная углерод-углеродная связь (С=С) образована одной <т-связью (перекрывание двух гибридных р-атомных орбиталей) и двумя я-связями (перекрывание двух негибридизированных орбиталей от каждого соседнего углеродного атома). а-Связь в тройной связи расположена на одной прямой линии, представляющей собой ось трех (Т-связей, Две л-связн расположены в двух взаимно перпендикулярных плоскостях (см. рис. 6). Тройная связь характерна для ацетиленовых углеводородов, в которых атом углерода, связанный тройной связью, находится в третьем валентном состоянии ( -гибридизация). [c.21]

    Итак, мы познакомились с двумя приближенными решениями уравнения Шрёдингера для молекул. Ранее (разд. 6.2.1) было показано, как, исходя из одноэлектронной модели молекулярного иона водорода Нг+, можно построить в некотором роде периодическую систему двухатомных молекул. Для применяемого при этом метода молекулярных орбиталей (МО) характерно заполнение молекулярной (а не атомной) орбитали ф последовательно одним, а затем и двумя электронами. В методе валентных связей (ВС) Гейтлера — Лондона исходят из атомных орбиталей, занятых одним электроном, а далее переходят к двухэлектронной системе (Не или На) путем линейной комбинации занятых атомных орбиталей, в которой учитывается неразличимость электронов. [c.87]

    Вернемся к рассмотрению пространственной структуры молекулы воды. При ее образовании происходит sp -гибридизация атомных орбиталей кислорода. Именно поэтому валентный угол НОН в молекуле Н2О (104,5°) близок не к 90°, н к тетраэдрическому углу ( 109,5°). Небольшое отличие этого угла от 109,5° 10ЖН0 понять, если принять во внимание неравноценность состояния электрон- ibix об.,1аков, окружающих атом кислорода в молекуле воды. В самом деле, в молекуле метана все восемь электронов, занимающие в атоме углерода гибрид- [c.138]


Смотреть страницы где упоминается термин Атомная орбиталь валентная: [c.54]    [c.4]    [c.138]    [c.94]    [c.102]    [c.202]    [c.361]    [c.147]    [c.361]    [c.94]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридизация атомных орбиталей и валентное состояние

Орбиталь атомная

Орбитальные энергии, заселенности валентных орбиталей и атомные заряды

Теория валентных связей линейных комбинаций атомных орбиталей ЛКАО



© 2025 chem21.info Реклама на сайте