Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлороформ образование

    Время жизни образовавшегося дихлоркарбена всегда крайне мало. В отсутствие реагирующего олефина он выдыхается . Например, хорошо изучены многостадийные и сложные реак-ци с дихлоркарбеном, полученным из трихлорацетата натрия [614]. Однако в случае реакции Макоши весь дихлоркарбен не образуется одновременно. Побочные реакции и гидролиз идут медленно, и система остается реакционноспособной в течение длительного времени даже в отсутствие хорошего акцептора карбена. Таким образом, находящийся в равновесии с исходным реагентом ССЬ может ждать субстрат, и поэтому становится возможной реакция даже с очень дезактивированными субстратами. На практике применяют 50%-ный (концентрированный) водный раствор гидроксида натрия в присутствии ТЭБА как катализатора и хлороформа в качестве растворителя. Общие тенденции к образованию, присоединению и гидролизу ССЬ приведены в табл. 3.18. В отсутствие олефина медленный гидролиз хлороформа ускоряется примерно в 6 раз под действием ТЭБА. Добавление олефина приводит к повышению расхода хлороформа, величина ускорения зависит от природы олефина. Гораздо большее значение имеет то, что соотношение скоростей присоединения карбена и гидролиза хлороформа зависит от нуклеофильности олефина и может изменяться в очень широких пределах [384]. Поэтому малореакционноспособные субстраты следует перемешивать с большим избытком основания и хлороформа длительное время. Из данных, приведенных в табл. 3.18, видно, что условий, оптимальных для всех олефинов, не существует. Тем не менее была проделана большая и успешная работа по оптимизации условий реакции [c.291]


    При разрушении растительных и животных остатков в воде образуются органические соединения, с которыми при определенных условиях хлор, содержащийся в воде, может реагировать с образованием веществ, опасных для здоровья людей. Эти вещества имеют групповое название трихлорметаны. Простейшим из трихлорметанов является хлороформ СНС1з, вызывающий рак у крыс. Из-за возможного токсического эффекта трихлорметанов Агентство по охране окружающей с реды США требует, чтобы их уровень в используемой воде не превышал 100 частей на миллиард. Имеется несколько способов решения этой проблемы, но все они не лишены недостатков. [c.90]

    При проведении реакций в небольшом масштабе (1—20 ммолей) избыток хлороформа используют как растворитель и как реагент. При работе с 0,1—1,0 молями олефина общий объем смеси приобретает большее значение. Установлено, что в условиях, указанных в табл. 3.18, 3—4-кратный избыток хлороформа по отношению к алкену дает наилучшие результаты. В реакциях Макоши выпадение осадка коричневых нерастворимых побочных продуктов (полимерный ССЬ ) наряду с образованием стойких эмульсий может затруднить перемешивание, особенно при медленных реакциях. В таких случаях полезно применение сорастворителя. Некоторые авторы применяли бензол, но использование дихлорметана [1856] предпочтительнее, так как он, по-видимому, слегка ускоряет основную реакцию. Подобный эффект еще более ярко выражен для других Дигалокарбенов. [c.293]

    Межмолекулярные силы взаимодействия при растворении компонентов масляных фракций в полярных и неполярных растворителях различны. Неполярные растворители, как например, низкомолекулярные жидкие или сжиженные углеводороды, ССЦ или соединения с небольшим дипольным моментом (хлороформ, этиловый спирт и др.) характеризуются тем, что притяжение между молекулами растворителя и углеводородов нефтяных фракций, обусловливающее образование растворов, происходит за счет дисперсионных сил. Неполярные растворители смешиваются с жидкими углеводородами нефти в любых соотношениях. [c.46]

    Как и большинство наркотических средств (кроме хлороформа), диэтиловый эфир огнеопасен и взрывоопасен. Более того, если его оставить постоять, он присоединяет к своим молекулам еще по нескольку атомов кислорода, и в результате получаются нестойкие соединения, которые могут самопроизвольно взрываться. Чтобы этого не случилось, эфир, предназначенный для наркоза, тщательно очищают и хранят в небольших запечатанных сосудах. В них кладут еще кусочки железной проволоки— железо замедляет образование взрывчатых соедине-ний. И все равно если сосуд с эфиром простоял открытым больше 24 часов, он для обезболивания уже не используется. [c.117]


    Как известно, прямое получение четыреххлористого углерода взаимодействием метана со стехиометрическим количеством хлора невозможно. В этом случае при достижении необходимых для протекания реакции условий- происходит взрыв с образованием элементарного углерода (сажи). То же самое происходит и при попытках прямого синтеза хлороформа. [c.165]

    При помощи рассмотренного процесса с неполным превращением исходного вещества предотвращают в зависимости от назначения процесса образование или чрезмерно высоких концентраций хлористого метилена или значительное образование продукта с более высокой степенью хлорирования, а именно хлороформа. [c.146]

    По способу для перекристаллизации дифенилолпропана также используется вода. Дифенилолпропан смешивают с водой (на 1 вес. ч. 0,5—2 вес. ч. воды) и смесь нагревают до 97—100 °С. При этом, в отличие от вышеописанного способа, происходит не растворение дифенилолпропана, а его расплавление с образованием двух фаз органической и водной. Далее смесь медленно охлаждают до 80—85 °С, а затем быстро — до 40 °С. Выпавшие кристаллы дифенилолпропана отфильтровывают, промывают водой, а затем растворителем (хлороформом или другим) для удаления побочных продуктов. Растворитель из дифенилолпропана отмывают водой. Высушенный продукт имеет т. пл. 156,3 °С. Для получения бесцветного продукта рекомендуется вести кристаллизацию дифенилолпропана из воды, имеющей pH от 1 до 6. С этой целью в воду можно добавлять кислоты (уксусную, соляную, щавелевую, лимонную). [c.171]

    Наблюдаются также изменения знака теплоты смешения с изменением состава (растворы хлороформа в спиртах, водные растворы этилового спирта при/>50 °С). Это иллюстрирует рис. VI, 7, на котором показана зависимость от состава раствора теплоты образования одного килограмма раствора С НвОН—Нр из компонентов при разных температурах. При 50 °С раствор с 70% спирта, а при 80 °С раствор с 34% спирта образуются без поглощения или выделения теплоты, т. е. при этом содержании спирта происходит изменение знака теплоты смешения компонентов. [c.193]

    Асфальтены представляют собой порошкообразные вещества от темно-бурого до черного цвета. Они аморфны, не плавятся при нагревании, но при температурах выше 300° С разлагаются с образованием кокса и большим выделением газов. Асфальтены хрупки. Удельный вес их больше 1 они нерастворимы в нефтяном эфире и легко растворяются в бензоле, сероуглероде, хлороформе, четыреххлористом углероде и т. д. Адсорбируются подобно смолам. Нефтяные асфальтены содержат серу и кислород, причел серы содержится всего лишь 0,5 — 1,5%, тогда как в асфальтенах из природных асфальтов количество серы доходит до 12%. Нефтяные асфальтены являются продуктом дальнейшего изменения смол, а именно — результатом их уплотнения. [c.100]

    Образование диазометана из гидразина, хлороформа и гидроксида натрия было впервые обнаружено Штаудингером в 1912 г.  [c.323]

    Входящие в состав жидкого топлива углеводороды и органические растворители в чистом виде и при отсутствии воды не активны по отношению к металлам и не разрушают их. Коррозионноактивными их делают различные примеси, которые вступают с металлами в химическое взаимодействие и разрушают их. Так, иод, будучи растворен в хлороформе, действует на серебро с образованием пленки нерастворимого в хлороформе иоднда серебра  [c.141]

    Хлорсульфоновая кислота применялась как катализатор алкилирова- ния и для удаления изопарафинов из смесей их с м-парафинами, однако она не реагировала с двойной связью и является единственным зарегистрированным случаем среди реакций с олефинами. С пентеноМ-2 в рас творе хлороформа при 0° реакция шла с выделением хлористого водорода и образованием смеси двух изомерных пентенсульфоновых кислот [35]. [c.357]

    А. Реакция разложения гексафенилэтана протекает в хлороформе с образованием трифенилметила. Реакция имеет первый порядок константа скорости к = кд мин-1 при 0° С. Схема реакции  [c.166]

    В качестве примера систем, в которых образуются соединения между молекулами компонентов (и не протекают в заметной степени другие процессы), можно назвать систему эфир — хлороформ. В подобных системах образование раствора сопровождается значительным выделением теплоты и наблюдаются отрицательные отклонения кривых давление пара — состав от линейной зависимости. [c.312]

    Реакции, индуциированные перекисями. Четыреххлористый углерод образует хлороформ также при его обработке предельными углеводородами в присутствии соединений, легко дающих свободные радикалы, нанример, перекисей [57]. При этом наличие третичного атома углерода в продольном углеводороде необязательно обменная реакция происходит достаточно легко как в случае нормальных парафинов, имеющих не менее трех атомов углерода, так и в случае разветвленных парафиновых и циклопарафиновых углеводородов. Так, пропан, и-гептан, изобутан и метилциклогексан при нагревании до 130—140° С с четыреххлористым углеродом в присутствии ди-/ г/)ет-бутилперекиси дают в качестве основных продуктов соответственно изопропилхлорид, етор-гептилхлориды, трет-бутилхлорид и 1-хлор-1-метилциклогексан. Четыреххлористый углерод при этом превращался в хлороформ. Свободные радикалы, образованные при разложении перекиси, инициируют следующую цепную реакцию  [c.218]

    Считается, что альтернативный синтез изонитрилов дает лучшие результаты по этой методике амины сначала превращают в N-сульфиниламины взаимодействием с тионилхлоридом, а последние в свою очередь вводят во взаимодействие с хлороформом, твердым гидроксидом калия и дибензо-18-крауном-6 (или еще лучше с дициклогексано-18-крауном-6) в циклогексане или бензоле [755]. В этом случае МФК-процесс с использованием системы ТЭБА/водный гидроксид натрия не обладает преимуществами и даже приводит к образованию менее чистых продуктов. [c.323]


    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Поэтому другие сообщения [623] о некоторой небольшой оптической индукции при присоединении СС12 в присутствии оптически активных аминов Р при К = Е1, РЬ и Н = Ме, Е1 (схема 3.10) были встречены сдержанно. Несмотря на то что Макоша рассмотрел предположения о появлении интермедиата типа О, который представляет собой илид, образованный при взаимодействии карбена с атомом азота, и показал [433], что его образование невозможно, данные этой работы игнорируются в некоторых более поздних исследованиях, и такие структуры все еще используются. [623] для объяснения хода реакции. Для того чтобы твердо установить, возможна ли оптическая индукция подобного типа, была проведена реакция с хлороформом и концентрированным раствором гидроксида натрия в присутствии (5)-(+)-К,К-диметилфенилэтиламина. Перегнанный продукт реакции действительно обладал небольшим оптическим вращением, которое, однако, исчезало при тщательной очистке [843, 1697]. [c.106]

    Ионные пары, образованные р-кетосульфоновым анионом и тетрабутиламмониевым катионом, экстрагировали в хлороформ и перед реакцией алкилирования высушивали. Однако необходимость этой меры предосторожности в данном случае не очевидна [342]. Выходы продуктов алкилирования составляли 63— 0%. [c.190]

    Показано [617], что при взаимодействии третичного амина, олефина и хлороформа (2 ч, 50°С) в отсутствие гидроксида натрия не образуется аддуктов дихлоркарбена. Далее, не наблюдалось также какой-либо реакции при продолжительном кипячении три-н-пропиламина и хлороформа [447]. Кимура и сотр. [623] считают, что А переносит дихлоркарбен к олефину. Однако Макоша [433] показал, что образование А не является обратимым при взаимодействии эквимолярных количеств третичного амина и хлороформа со стиролом и NaOH не образуется аддукт дихлоркарбена со стиролом. Макоша считает, что при нормальных условиях (при избытке хлороформа) А де-протонирует хлороформ с образованием ионной пары В, которая затем может переносить ССЬ с образованием С. Затем С разлагается на хлороформ и амин, и цикл может начаться снова [433]. [c.325]

    Данная реакция между низшими спиртами, избытком хлороформа и 50%-ным водным раствором гидроксида натрия в присутствии ТЭБА приводит к сложным смесям продуктов. Препаративный интерес представляют только реакции с этанолом и 2,2,2-трифторэтанолом, которые приводят к образованию ортоформиатов с выходами 36 и 33% [762]. В случае этанола побочными продуктами являлись этилхлорид, карбонат и окса-лат. [c.328]

    В разд. 3.20.1 упоминалось, что в двухфазной системе МаОН/СНС1з/катализатор образуются и ССЬ, и ССЦ и что в зависимости от субстрата в реакцию вступает та или другая частица. К очень электронодефицитным олефинам, таким, как винилацетат, акрилонитрил или акриловые эфиры, идет только присоединение хлороформа по двоййой связи но иногда наличие -заместителя может оказаться достаточным для сдвига реакции в сторону образования циклопропана. В метакрилонит-риле обе возможности реализуются одновременно (схема 3.188). [c.329]

    Реакция между алкилтиоцианатами и хлороформом в присутствии системы МаОН/ТЭБА умеренно экзотермична и (в результате замещения цианид-иона) приводит к образованию [c.331]

    Обменные процессы в условиях МФК идут даже при конкурентном образовании карбенов из равных молярных количеств бромоформа и хлороформа например, реакция со стиролом в специфических условиях в присутствии системы гидроксид натрия/ТЭБА приводит к образованию 78% аддукта СВгг, 15% аддукта ССЬ и 7% аддукта Br l [384]. В отсут- [c.352]

    Добавление тетрабутиламмонийхлорнда к водному раствору СгОз приводит к образованию осадка, представляющего собой Bu4N+H r04 . Хотя этот реагент, по-видимому, должен быть устойчив при комнатной температуре, однако следует принимать меры предосторожности на случай непредвиденного взрыва. Этот реагент окисляет в кипящем хлороформе вторичные спирты до кетонов (3—12 ч), а аллильные и бензильные спирты до альдегидов (1—4 ч) [1198]. Другим эффективным окислителем [c.399]

    Наиболее часто встречаются системы, отвечающие рис. 115, когда один из комтю-нентов, в данном случае ацетон, неограниченно смешивается с двумя другими, в нашем прн.мере — с водой и с хлороформом. При прибавлении ацетона к двухслойной системе из этих двух компонентов увеличивается их взаимная растворимость вплоть до образования однородной смеси. При [c.336]

    Большой интерес представляют системы, в которых имеются как положительные, так и отрицательные бинарные азеотропы. Два положительных азеотропа или положительный азеотроп и низкокипящий компонент, не входящий в состав этого азеотропа, порождают образование хребта на поверхности давления. Два отрицательных азеотропа или один отрицательный азеот-. роп и высококипящий компонент, не входящий в состав этого азеотропа, обусловливают появление впадины. При одновременном наличии в тройной системе хребта и впадины может получиться седловина на поверхности давления (рис. 20, в). При наличии седловины к поверхности давления можно провести параллельную концентрационному треугольнику касательную плоскость. Точка касания отвечает седловидному или положительно-отрицательному азеотропу. В соответствии с геометрической природой седловины давление (или температура) в точке седловидного азеотропа не должно быть ни самым большим, ни самым малым в системе. Следоватепьно, седловидные азеотропы не имеют экстремума температуры или давления. Такой азеотроп впервые был обнаружен Райндерсом и де Минье [79] пр исследовании системы ацетон—хлороформ—вода. [c.75]

    Из изложенного выше Следует, что для образования двух дистилляционных областей необходимо, чтобы в системе имелся отя бы один азеотроп. Однако аличие азеотропов не во всех случаях вызывает о-бразование двух дистилляционных областей. На рис. 37 показан ход изотерм-изобар и дистилляциоенык линий в системе сероуглерод [А)—ацетон (В)—хлороформ (С), В этой системе имеется один азеотроп с майсимумом темтературы кипения ацетон—хлороформ М ( кип=64,5°) и один азеотроп с минимумом температуры кипения сероуглерод—ацетон лг( кип=39,2 ).Несмотря на это, в этой системе имеется одно семейство изотерм-изобар (рис. 37а) и, соответственно с этим, одно сбмейство дистилляционных линий (рис. 376). Последние начинаются в точке т и кончаются в точке М. [c.116]

    Подтверждением этого является наличие характе1р(Ного по-адижония температуры на ривых ректификации этих смесей (см. рис. 46,6, 46,7, 46,Я, 46,9, и 46,/0) и образование четырех фракций механизм этого явления выше был уже рассмотрен. /При ректификации смесей 6, 7 и 8 первой фракцией является азеотроп хлороформ — метанол, второй фракцией — седловидный азеотроп третья фракция по составу приближается к азеотропу ацетон — метанол и четвертой фракцией является азео- [c.129]

    Кривые разделяющие линии ректификации получаются при наличии в системе хребта на поверхности температуры, обусловленного образованием в системе отрицательных азеотропов. Как уже было показано, хребет может проходить между двумя точками отрицательных бинарных азеотропов (как в системе ацетон—хлороформ—изопропиловый эфир) или между точкой отр Ицательного бинарного азеотропа и противолежащей вершиной, если она соответствует компоненту с наивысшей температурой кипения (как в системе ацетон—хлороформ—бензол). Характерной особенностью систем, имеющих кривую разделяющую линию, является то, что при ректификации смесей, точки оостава которых лежат в областях, ограниченных этой кривой, вторая фракция представляет фракцию переменного состава и [c.132]

    Радикальной реакцией с простыми цепями является, но-видимому, осуществляемое при радиационно-химическом инициировании разложение хлороформа в присутствии кислорода в температурном инторпале —80 —[-ЪТС [503]. Было обнаружено, что реакция идет в две стадии. Главным продуктом первой стадии является перекись I3OOH, причелг скорость ее образования не зависит от копцентрации кислорода. Во второй стадии перекись исчезает, и на смену ей появляются фосген, H I, G I4, СО и другие продукты. Существенно отметить, что аналогичная стадийность наблюдается и при термическом цепном окислении углеводородов в области медленного окисления (см. 44) с преимущественным образованием перекисей в первой стадии. Это можно рассматривать как указание на сходство химического механизма вторичных процессов в обеих реакциях. [c.226]


Смотреть страницы где упоминается термин Хлороформ образование: [c.97]    [c.132]    [c.581]    [c.218]    [c.224]    [c.62]    [c.94]    [c.161]    [c.166]    [c.289]    [c.303]    [c.399]    [c.400]    [c.190]    [c.84]    [c.58]    [c.395]    [c.63]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Хлороформ



© 2025 chem21.info Реклама на сайте