Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины сильные основания

    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]


    Последняя представляет собой очень сильное основание, близкое ио свойствам к щелочам при взаимодействии с кислотами образует с выделением воды соли тетраметиламмония. Тетраалкиламмониевые основания термически неустойчивы при нагревании гидрат окиси тетраметиламмония распадается на третичный амин и метиловый спирт  [c.167]

    Чем выше значение - тем сильнее амин как основание (см. табл. 15.1). Как же изменяется основность аминов в зависимости от их строения  [c.137]

    Среди веществ, которые затрудняют проведение анализа, находятся карбонильные соединения и другие соединения, имеющие сильное поглощение в области 5,8 мкм. Поправка на присутствие небольших количеств таких веществ делается либо путем компенсации в пучке сравнения, либо с помощью соответствующего холостого измерения. Амины, сильные основания и соли слабых [c.448]

    Природа радикала влияет на силу аминов как оснований. В то время как алифатические амины — сильные основания, не уступающие аммиаку, основность ароматических аминов гораздо ниже. Это объясняется тем, что электронная пара азота участвует в мезомерии с тс-электронной системой ароматического ядра и поэтому менее склонна присоединять протон  [c.391]

    Вследствие того, что углеводородный радикал в магнийорганических соединениях носит анионоидный характер, эти соединения являются сильными основаниями и сильными нуклеофильными реагентами и поэтому взаимодействуют со многими органическими и неорганическими соединениями. С реактивами Гриньяра не реагируют лишь предельные углеводороды, простые эфиры, алкены с неактивированной кратной связью, третичные амины. [c.262]

    Пиперидин является сильным основанием и имеет запах средних алифатических аминов с водой смешивается во всех соотношениях. Т. кип. 1067757 мм, т. пл. —13°. По отношению к окислителя.м на холоду он достаточно устойчив, но при нагревании медленно окисляется, причем в зависимости от условий окисления происходит расщепление до различных аминокислот  [c.1019]

    Пиперазин является легко растворимым в воде сильным основанием, дающим хорошо кристаллизующиеся соли. Т. пл. 104°, т. кип, 145°. Его общие хи.мические свойства соответствуют свойствам алифатических вторичных аминов. [c.1036]

    Однако основные свойства у ароматических аминов гораздо менее выражены, чем у жирных. В последних под влиянием алкильных радикалов основность аминогруппы увеличивается, н жирные амины, как уже указано (стр. 272), являются более сильными основаниями, чем аммиак. В ароматических же аминах основные свойства аминогруппы, непосредственно связанной с бензольным ядром, под влиянием последнего ослаблены поэтому ароматические амины представляют собой более слабые основания, чем аммиак. Водный раствор анилина СвНаЫНз не показывает щелочной реакции на лакмус его соли с соляной или серной кислотами сильно гидролизуются, и их растворы в воде окрашивают лакмус в красный цвет, как растворы солей слабых оснований и сильных кислот. [c.387]


    Эти соли при действии сильных оснований дают амины  [c.136]

    Моно- и диалкилбораны (если они не связаны координационно с сильными основаниями Льюиса, такими, как третичные амины) существуют [c.291]

    Пиперидин не проявляет ароматических свойств и является более сильным основанием, чем пиридин. По реакциям он аналогичен вторичным аминам. Группировка пиперидина также встречается в некоторых природных соединениях (алкалоидах). [c.432]

    Образующиеся соли под действием более сильного основания вновь переходят в основание амина  [c.353]

    За исключением ионных гидроксидов, как, например, NaOH, уже содержащих ионы ОН , основания в результате реакции с водой образуют в растворе дополнительные ионы ОН . Сопряженные кислоты сильных оснований не могут быть более сильными, чем Н2О. К числу наиболее распространенных сильных оснований относятся гидроксиды и оксиды щелочных и щелочноземельных металлов. Слабые основания включают HjO, NH3, амины и анионы слабых кислот. Степень протекания реакции слабого основания с водой с образованием ионов ОН и кислоты, сопряженной основанию, определяется константой диссоциации основания (константой основности) К . [c.102]

    Поэтому водные растворы аминов имеют щелочную реакцию и окрашивают лакмус в синий цвет. Более того, под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому низшие амины жирного ряда являются значительно более сильными основаниями, чем аммиак. [c.272]

    Едкие щелочи, как более сильные основания, вытесняют амины из их солей. Например  [c.273]

    Пирролин — сильное основание, аналогичное ненасыщенным аминам жирного ряда. Пирролидин по свойствам подобен насыщенным вторичным аминам. [c.419]

    Примеров реакций нуклеофильного замещения азотсодержащих групп известно мало. Соображения, высказанные относительно причин, порождающих затруднения при замещении гидроксигруппы спиртов нуклеофильными реагентами (см. начало разд. 2.2), с еще большим основанием могут быть отнесены к нуклеофильному замещению аминогруппы, где частичный положительный заряд на атоме углерода еще меньше, чем в спиртах, а вытеснение группы ЫНг в виде аниона не удается осуществить даже самыми сильными нуклеофильными реагентами — карбанионами, которые при взаимодействии с аминами ведут себя исключительно как сильные основания (а амины — как NH-ки лoты). [c.177]

    Однако по сравнению с аммиаком амины являются более сильными основаниями. Это объясняется отличием в строении их молекул. Если в молекуле аммиака к атому азота сдвигаются электронные облака от трех атомов водорода, то, например, в молекуле метиламина СНз—NH2 к атому азота сдвинуты Электронные облака от пяти атомов водорода (от двух атомов водорода — непосредственно, а от трех — через атом углерода)  [c.6]

    Большинство Д - бесцв кристаллы, хорошо раств в воде и спирте Обладают всеми хим св вами, характерными для моноаминов (см Амины) Сильные основания, образуют соли с к-тами Д - двухкислотные основания, между первой и второй константами диссоциации различия могут достигать трех порядков, причем они резко уменьшаются для длинноцепных алифатич а, <в-Д (см табл) [c.45]

    В зависимости от константы диссоциации ионогенной группы, содержащей в качестве противоиона ион водорода или ион гидроксила, ионообменные смолы подразделяются на сильно и слабо диссоциирующие. Как правило, поведение группы в ионите аналогично поведению соответствующих простых органических веществ. Например, сульфокатионит в Н-форме проявляет свойства сильной кислоты по сравнению с карбоксильным катионитом в Н-форме, подобное соотношение характерно и для фенолсульфо-кислоты и салициловой кислоты. Для анионитов на основе ароматических аминов (слабые основания) и алифатических аминов (сильные основания) наблюдается аналогичное соответствие с основностью анилина и метиламина. Таким образом, катиониты бывают сильнокислотные (—S H- и —Р0(0Н)2-группы) и слабокислотные СООН- и — —ОН-группы . Аниониты, полученные обработкой хлорметилированного полимера триметиламином или диметиламином, являются сильноосновными (почти полностью ионизированными), а при обработке первичными, вторичными или полиаминами — слабоосновными. [c.8]

    Аммиак и амины являются более сильными основаниями, чем вода. Для количественной оценки силы оснований служит величина константы основности к (подобно константе кислотности К у карбоновых кислот и фенолов). Она определяегся способностью оснований (аминов) отрывать протон от воды и определяется из равновесия  [c.136]

    N-aлкилиpoвaниe в классическом варианте проводится в двухфазной системе, содержащей карбонат натрия или щелочь. Для того чтобы вторичные или третичные аммониевые соли могли образоваться из аминов, последние должны подойти к поверхности раздела фаз. Скорость реакции будет определяться нуклеофильностью амина из этого следует, что МФ-катализатор не должен оказывать заметного влияния на реакции нормальных аминов. Водный раствор натриевой щелочи не является достаточно сильным основанием для депротонирования неактивированных аминов. Однако депротонирование становится возможным, если кислотность NH-гpyппы повышается под влиянием соседних электроноакцепторных групп  [c.160]


    Этот разрыв происходит под действием очень сильных оснований (таких, как амид NH2, алкоголят R0", другой карбанион R"), нейтрализованных щелочным металлом (K Na , Li ) в растворах с большой диэлектрической проницаемостью (NH3 или амины, спирты, диметил-сульфоксид, гексаметилфосфамид) [31—33]. [c.43]

    Активными катализаторами реакций перемещения двойной связи и ц с-т/ анс-изомеризации оказались растворимые в углеводородах органические соединения щелочных и щелочноземельных металлов — сильные основания (В. Н. Ипатьев с сотр.). Например, бутен-1 в растворе о-хлортолуола переходит в смесь цис- и транс-бутена-2 при добавлении натрия и антраценнатрия [3]. трет-Ъу-тилкалий вызывает превращение 2-метнлпентена-1 в 2-метилпен-тен-2, причем скорость реакции существенно возрастает, если ее проводить в растворе диметилсульфоксида [4]. Растворы натрия и лития в этилендиамине активируют структурную изомеризацию [5]. Интересно, что сами амины, даже высокоосновные, не вызывали изомеризации [6]. [c.89]

    Реакции изомеризации включают стадии дегидрирования и поэтому маловероятны в условиях высокого давления водорода. Протекание реакций образования первичных и вторичных аминов доказывается тем, что примерно половина оснований, экстрагируемых 10%-ной На804, ацетилируется, т. е. представляет собой смесь первичных и вторичных аминов Однако эти реакции не могут играть большой роли в явлении повышения основности азотсодержащих соединений, так как производные пиридина и хинолина и до гидрирования являются сильными основаниями, а содержание производных пиррола невелико (см. табл. 49). [c.212]

    Арсины отличаются от аминов еще больше, чем фосфины первичные, вторичные и третичные арсины уже не обладают основными свойствами и не способны образовывать соли сильными основаниями являются лишь гидроокиси арсонйя. [c.180]

    Получается, что алкиламины даже несколько более сильные основания, чем аммиак. Это связано, во-первых, с электронодонорным +1-з< фектсм алкильных хрупп (Я"—>НН,), а во-вторых, с возможностью делокализации положительного заряда ат ома азота на алкильных группах амина. В соответствии этим, чем больше алкильных пэупп у атома азота, тем болыие проявляются основные свойства (однако следует учи тывать и возрастающие при этом пространственные факторы, снижающие / ). [c.137]

    Стерические эффекты могут быть вызваны также напряжением других типов. 1,8-быс-(Диэтиламино)-2,7-диметокси-нафталин (2) — исключительно сильное основание в ряду третичных аминов (р/(а сопряженной кислоты равно 16,3 по сравнению с р/Са Ы,Н-диметиланилина, равным 5,1), но перенос протона от атома азота и к нему происходит настолько медленно, что за этим процессом можно следить с помощью УФ-спектрофотометра [101]. Значительное напряжение в молекуле 2 вызвано тем, что неподеленные электронные пары атомов азота вынуждены находиться рядом друг с другом. При протонировании напряжение ослабевает, так как одна из неподеленных пар образует связь с водородом, который в свою очередь образует водородную связь со второй неподеленной парой. Аналогичный эффект наблюдается в 4,5-бис-(диметиламино) флуорене (3) [101а]. [c.346]

    Если требуется первичный или вторичный амин сразу превратить в четвертичную соль (исчерпывающее алкилирование), то скорость можно увеличить добавлением пеиуклеофпльпого сильного основания, которое служит для удаления проюпа [c.146]

    Несмотря на то что диазотирование происходит в кислой среде, в действительности атаке подвергается не соль амина, а небольшое количество свободного амина, присутствуюш,его в растворе [403]. Поскольку алифатические амины —более сильные основания, чем ароматические амины, в среде с pH ниже 3 свободного алифатического амина недостаточно для реакции, тогда как ароматический амин в этих условиях еще может ди-азотироваться. В разбавленной кислоте истинной атакующей частицей является N2O3, которая служит носителем иона N0+. Это подтверждается тем, что в азотистой кислоте при достаточно низкой кислотности реакция имеет второй порядок и амин не фигурирует в выражении скорости [404]. Для рассматриваемых условий механизм реакции можно представить следующим образом  [c.480]

    Элиминирование НХ из алкилгалогенидов носит общий характер и может быть проведено с хлоридами, фторидами, бромидами и иодидами [236а]. В качестве основания чаще всего употребляется горячий спиртовой раствор КОН, но допускается и использование более сильных оснований [237] (ОК, NH2 и т. п.) или более слабых оснований, например аминов. В трудных случаях хорошими реагентами оказываются би-циклические амидины, 1,5-диазабицикло[3.4.0]нонен-5 (ДБН) [238] и 1,8-диазабицикло[5.4.0]ундецен-7 (ДВУ) [239, 240]. При проведении реакции с таким осповаиием, как ОН , был использован межфазный катализ [241]. Как уже говорилось в разд. 17.5, [c.59]

    Третичные амины могут алкилироваться далее с образованием солей четвертичных аммониевых оснований, например ( HJ)з,N+ HзI - [(СНз)4Ы] 1— иодистый тетраметиламмоний. Эти соли нейтральны, так как соответствующие гидроксиды четырехзамещенного аммония — сильные основания. [c.93]

    Основные свойства аминов зависят 01 строения органического радикала. Так, например, метиламин более сильное основание, чем аммиак, вследствие увеличения электронной плотности на атоме азота под действием метильной группы, а анилин проявляет очень слабые основные свойства из-за того, что свободная пара электронов азота взаимодействует с р-элсктронами бензольного кольца и частично уходит туда  [c.71]


Смотреть страницы где упоминается термин Амины сильные основания: [c.204]    [c.56]    [c.164]    [c.136]    [c.137]    [c.576]    [c.35]    [c.320]    [c.347]    [c.160]    [c.162]    [c.204]    [c.440]    [c.167]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.669 , c.671 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.669 , c.671 ]




ПОИСК





Смотрите так же термины и статьи:

Основание сильные



© 2025 chem21.info Реклама на сайте