Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

технологические схемы для получения газообразного кислорода

Рис. 198. Схема установки для получения газообразного технологического и технического кислорода Рис. 198. <a href="/info/13990">Схема установки</a> для получения газообразного технологического и технического кислорода

Рис. 69. Принципиальная схема установки низкого давления для получения газообразного технологического кислорода Рис. 69. Принципиальная <a href="/info/1873812">схема установки низкого давления</a> для получения газообразного технологического кислорода
    Выше подробно рассмотрен технологический процесс получения газообразного кислорода на примере наиболее простой установки, работающей по циклу высокого давления. В установках с более сложной технологической схемой используются холодильные циклы низкого и высокого давлений, применяются поршневые детандеры, турбодетандеры, регенераторы, кислородные насосы и другое дополнительное оборудование, что вносит ряд особенностей в процессы пуска и обслуживания таких установок. Эти особенности рассматриваются более кратко, так как основные принципы регулирования процесса в воздухоразделительном аппарате остаются такими же, как для установок высокого давления. [c.601]

    Технологическая схема получения жидкого азота предусматривает сжижение газообразного азота, предварительно сжатого в турбокомпрессоре низкого давления 14 до 0,6 МПа, в результате испарения жидкого кислорода. [c.133]

    Разделение воздуха является достаточно сложной технической задачей, особенно если он находится в газообразном состоянии. Этот процесс облегчается, если предварительно перевести воздух в жидкое состояние сжатием, расширением и охлаждением, а затем осуществить его разделение на составные части, используя разность температур кипения кислорода и азота. Под атмосферным давлением жидкий азот кипит при —195,8 °С, жидкий кислород при —182,97 °С. Если жидкий воздух постепенно испарять, то сначала будет испаряться преимущественно азот, обладающий более низкой температурой кипения по мере улетучивания азота жидкость будет обогащаться кислородом. Повторяя процесс испарения и конденсации многократно, можно достичь желаемой степени разделения воздуха на азот и кислород требуемых концентраций. Такой процесс многократного испарения и конденсации жидкости и ее паров для разделения их на составные части называется ректификацией. Поскольку данный способ основан на охлаждении воздуха до очень низких температур, он называется способом глубокого охлаждения. Получение кислорода из воздуха глубоким охлаждением — наиболее экономично, вследствие чего этот метод нашел широкое применение в промышленности. Глубоким охлаждением и ректификацией воздуха можно получать практически любые количества дешевого кислорода или азота. Расход энергии на производство 1 кислорода составляет от 0,4 до 1,6 квт-ч (1,44-10 —5,76-10 дж) в зависимости от производительности и технологической схемы установки. [c.15]


    Способы решения уравнения (124) зависят как от назначения установки (для получения газообразного кислорода, для получения жидкого кислорода и т. п.), так и от построения технологической схемы (с двумя детандерами, с одним детандером и т. п.) [55]. В ряде случаев целесообразно уравнения теплового баланса решать лишь для теплой части теплообменных аппаратов, ограниченной сечением, где разность температур между потоками минимальна. При давлениях воздуха ниже критического АГт.п наблюдается обычно в сечении начала конденсации воздуха. Такой способ расчета исключает необходимость применения итерационных методов [14], связанных с определением температуры обратных потоков в сечении отбора воздуха на детандер среднего давления. [c.172]

    Как показывают расчеты, при использовании однотипного оборудования ео весьма мало. Так, при сравнении схем крупных установок для получения газообразного кислорода под атмосферным давлением с различными холодильными циклами еб= —0,01ч-0,01, при сравнении схем с различными з злами ректификации 86=0,01- 0,02 и т.п. При этом по данным об относительных энергетических затратах можно судить и об относительной стоимости продуктов разделения для различных схем. Естественно, что при разнотипном оборудовании, а также в случае принятия в сопоставительных расчетах различных значений исходных технологических параметров ее может изменяться в более широких пределах. [c.201]

    Технологическая схема включает следующие основные операции подготовку жидких питательных растворов, подачу в ферментатор газообразного источника углерода и кислорода, выращивание микроорганизма — продуцента белка, отделение и промывку полученной биомассы от культуральной жидкости, концентрирование биомассы и ее сушку. [c.270]

    Существует большое количество технологических схем кислородных установок для получения газообразного и жидкого кислорода. В настоящей главе рассмотрены некоторые нашедшие широкое применение в промышленности технологические схемы установок, оборудованных регенераторами. [c.36]

    Этим давлением, которое в дальнейшем будем называть технологическим, и ограничивается состояние воздуха после детандера. В принципе же схема в части холодильного цикла будет аналогична показанной на фиг. 23. Применительно к воздухоразделительной установке, предназначенной для получения технического газообразного кислорода, схема в упрощенном виде дана на фиг. 27. Здесь давление после детандера ограничивается давлением в нижней колонне. Внутренний теплообмен в колонне, организованный аналогично рассмотренному ранее (фиг. 10 и 11) для получения жидких фракций, с холодильным циклом связан только ограничением давления после детандера. На рекуперацию холода подаются продукты разделения. Схематично в 5 — Г-диаграмме характер протекания цикла иллюстрируется фиг. 28, на которой для упрощения, как и раньше, цикл рассматривается как воздушный холодильный цикл, но с внутренним теплообменом в области пара, по Характеру аналогичным происходящему в колонне,— линия 3—4 соответствует охлаждению в ожижителе и испарителе колонны, линия 5—6—7 — конденсации в колонне. [c.58]

    При одинаковых потерях холода, т. е. при примерно одинаковых количествах газа, направляемых в турбодетандер, в схеме с отбором газообразного азота из нижней колонны выход кислорода меньше, а следовательно, расход энергии больше, чем в схеме с вводом газообразного воздуха в верхнюю колонну. Это различие в показателях схем, довольно существенное при получении технологического кислорода и больших значениях Д, уменьшается при получении технического кислорода, а также при малых значениях Д. При Д < 0,20 нл( /нл п. в. различие между схемами практически исчезает. [c.182]

    Этим давлением (в дальнейшем его будем называть технологическим) и ограничивается состояние воздуха после детандера. В принципе же схема в отношении холодильного цикла будет аналогична показанной на рис. 23. В воздухоразделительной установке, предназначенной для получения технического газообразного кислорода (рис. 27), давление после детандера ограничивается давлением в нижней колонне. Внутренний теплообмен в колонне,, организованный аналогично рассмотренному выше (см. рис. 10 и И), для получения жидких фракций, — с холодильным циклом связан только ограничением давления воздуха после детандера. На рекуперацию холода [c.56]

    Расход энергии на получение технического кислорода выше, чем расход энергии на получение технологического кислорода, в основном в связи с большим расходом энергии на процесс разделения. Для схемы низкого давления с вводом газообразного воздуха в верхнюю колонну при Qo. = ИО кдж кмоль п. в. расчетный расход энергии при получении технического кислорода составляет 45,8 Мдж кмоль Ог, а при получении технологического кислорода 36,3 Мдж кмоль О а. [c.180]


    Кислородная установка ВНИИКИМАШ БР-1 является крупной установкой для получения технологического кислорода. Номинальная производительность установки составляет 12 500 им ч кислорода. Эта установка была первой крупной установкой газообразного кислорода, созданной по схеме низкого давления. На ее базе, по-существу, разработана описанная выше установка ВНИИКИМАШ БР-5. [c.47]

    Анализ технологических схем воздухоразделительных установок показал, что при существующих типах и номенклатуре установок турбодетандеры целесообразно использовать прежде всего в установках, предназначенных для получения технического газообразного кислорода, азота или обоих продуктов разделения воздуха, работающих по циклу среднего давления с детандером. На характерные для установок среднего давления с насосом жидкого кислорода параметры воздуха рабочее давление 4—6 Мн/м , давление после детандера около 0,6 Мн/м и температура воздуха перед машиной около 160—170° К создан ряд промышленных турбодетандеров, основные характеристики которых приведены в приложении 8. Адиабатический к. п. д. этих малых турбодетандеров составляет 68- 72%. [c.254]

    В книге изложены способы получения из воздуха газообразного кислорода, применяемого для интенсификации технологических процессов в черной и цветной металлургии, а также в химической, газовой и других отраслях промышленности. Рассмотрены физические основы процессов очистки, сжижения и разделения воздуха, схемы и конструкции применяемых в металлургии кислородных установок. [c.2]

    Хаотические эмпирические работы, цель которых найти подходящие катализаторы и оптимальные условия реакций, уступили место работам, учитывающим теоретические закономерности. В начале 30-х годов появилось много работ, выясняющих цепной характер окисления метана [37— 40], этана [41, 42], пропана [43] и других углеводородов [44]. В результате было найдено, что все реакции окисления газообразных углеводородов протекают с автокатализом за счет промежуточных продуктов. Для подробного и точного выяснения механизма окислительных реакций Семенов и его сотрудники [45] с 30-х годов систематически изучали химизм этих реакций путем качественной и количественной регистрации всех стабильных продуктов. Впоследствии это позволило совместно с технологическими организациями разработать экономичный метод получения формальдегида прямым окислением метана кислородом воздуха (см. схему).  [c.316]

    Применение аппаратов двукратной ректификации с вводом газообразного воздуха в верхнюю колонну, а также с отбором газообразного азота из нижней колонны при получении технологического кислорода позволяет не только уменьшить расход энергии на процесс разделения воздуха при достаточно полном извлечении кислорода, но и построить схему воздухоразделительной установки при одном низком давлении. [c.151]

    Начиная с 1962 г. Свердловский кислородный завод Средне-уральского совнархоза выпускает унифицированную установку УКА-0,11 (АжК-0,02), заменяющую ранее выпускавшиеся установки ЖАК-80, ГЖАК-20, ЖА-20 и СКАДС-17. Азото-кислородная установка УКА-0,11 предназначена для получения газообразного кислорода, газообразного азота или жидкого азота (одновременно можно получить только один из указанных продуктов). Установка работает по циклу высокого давления с поршневым детандером. Технологическая схема установки показана на рис. 50. На режиме получения газообразного кислорода установка работает так же, как и описанная выше установка СКАДС-17. [c.164]

    Технологическая схема установки дана на рис. 4.12. Атмосферный воздух засасывается через фильтр /9 в I ступень компрессора 18 и сжимается последовательно в пяти ступенях, проходя по-<У10 каждой из них холодильники и масло-влагоотделители. Сжатый до давления 200 кгс/см (при пуске или получении жидкого кислорода и азота) или 100—ПО кгс/см (при получении газообразного кислорода или азота) воздух направляется в ожижитель 13, установленный в блоке разделения, где охлаждается отходящим -отбросным азотом до плюс 5 — плюс 10 °С. При этом содержащиеся в воздухе водяные пары конденсируются и собираются во влагоотделителе, установленном перед блоком очистки, а затем удаляются продувкой. Далее воздух поступает в один из адсорберов 21 блока очистки и осушки, где двуокись углерода, влага и ацетилен поглощаются цеолитом. Очищенный от этих примесей воздух затем вновь направляется в блок разделения. При получении жидких кислорода или азота поток воздуха разделяется на два один из них-(до 56%) направляется в поршневой детан- [c.168]

    Схема технологической машины показана на рис. 41. Сжатый в компрессорной машине воздух поступает в ожижитель влаги 6 и охлаждается до температуры 278—280° К- При получении жидких кислорода и азота давление воздуха составляет 18—-20 Мн1м , при получении газообразного кислорода 13—14 Мн1м , при получении газообразного азота 15,5—18 Мн м . Охлаждение воздуха в ожижителе производится газообразными продуктами разделения. Из ожижителя воздух направляется в отделитель влаги 4, затем в один из баллонов, заполненных синтетическим цеолитом МаХ, который обеспечивает осушку воздуха до точки росы 203° К, очистку от двуокиси углерода до остаточного содержания не более 2 см м и практически полное удаление ацетилена при концентрациях, обычно наблюдаемых в воздухе. В режиме очистки один баллон работает 10 ч. Затем поток воздуха переключается на другой баллон, а первый подвергается регенерации адсорбента азотом в количестве 0,022—0,036 м сек, нагретым в электронагревателе 3 до температуры 653—673° К. Регенерация протекает примерно в течение 3 ч и заканчивается по достижении температуры регенерирующего газа на выходе из осушительного баллона не ниже 473° К. После регенерации адсорбент охлаждается в течение 6 ч тем же потоком азота при выключенном электроподогревателе. [c.56]

    На рис. 3. 9 приведена технологическая схема получения бедного концентрата. Воздух, охлажденный в регенераторах, поступает в колонну 1 высокого давления воздухоразделительного аппарата, где происходит предварительное разделение с получением азота и жидкости, обогащенной кислородом. Окончательное разделение воздуха на азот и кислород осуществляется в верхней колонне 2 низкого давления жидкий кислород, в котором концентрируются криптон и ксенон, стекает в нижнюю часть колонны 2, откуда выводится в основной 3 и выносной 4 конденсаторы. В конденсаторе 3 происходит полное испарение кислорода, который возвращается в колонну 2] в конденсаторе 4, куда направляется около половины произведенного кислорода, небольшое количество кислорода остается жидким, причем в жидкости концентрируются углеводороды. Поток из конденсатора 4 проходит через сепаратор 5, где отделяется жидкость, которая непрерывно выводится из установки через продувочную линию таким способом обеспечивается дополнительная очистка газа от примесей углеводородов. Газообразный кислород, содержащий криптон и ксенон, из колонны 2 и сепаратора 5 вводится в криптоновую колонну 6, где происходит ректификация смеси с получением в качестве нижнего продукта бедного криптонового концентрата, содержащего0,1—0,2% криптона и ксенона, и газообразного кислорода, который, направляется в регенераторы. Рабочее флегмовое чирло (т. е. отношение количеств стекающей жидкости и поднимающегося пара) в верхней части криптоновой колонны составляет 0,11—0,12. Флегма получается в конденсаторе, расположенном наверху криптоновой колонны 6 в межтрубное пространство конденсатора направляется жидкость из куба нижней колонны J, прошедшая адсорберы 7 и переохладители 8, образующиеся в конденсаторе пары возвращаются в верхнюю колонну 2 воздухоразделительного аппарата. [c.126]

    К числу последних зарубежных разработок по высокотемпературному пиролизу тяжелых фракций нефти следует отнести процесс японской фирмы Mitsubishi [Пат. 4520224, 1985 4527002, 1985 4527003, 1985, США]. Технологическая схема процесса включает следующие зоны получения теплоносителя, реакционную, закалки продуктов пиролиза, сепарации газообразных продуктов от жидких продуктов пиролиза, а также конверсии метана в водород и узел пиролиза этана и пропана. Теплоноситель получают путем сжигания жидкого топлива в среде чистого кислорода с разбавлением продуктов горения водяным паром. Перед входом в реакционную зону в теплоноситель вводится смесь метана с водородом при молярном отношении 0,05—4,00. Температура сложного теплоносителя на входе в реактор около 1200 °С, в реакционной зоне — 800—1200°С, парциальное давление водорода не более 0,5 МПа, время контакта — 5—300 мс, общее давление в системе около 2 МПа. В качестве сырья пиролиза используют тяжелые сернистые нефтяные остатки. [c.25]

    Для осуществления всед перечисленных стадий процесса получения кислорода применяется специальное оборз до-вание, указанное в технологической схеме кислородной установки производительностью 5 м газообразного кислорода в час (рис. 19). [c.69]

Рис. 69. Зависимость расхода энергии на получение кислорода к (сплошные линии) и расхода энергии на процесс разделения (штриховые линии) от Qo. (т]из =0,6) а — при получении технического кислорода (99,5% Ог) для схем одного высокого или среднего давления (I — с дросселированием воздуха 2 —с дрос-селированием воздуха и предварительным аммиачным охлаждением 3 — с детандером) двух направлений 4 — с предварительным аммиачным охлаждением 5 — с детандером 6 — с предварительным аммиачным охлаждением и детандером) низкого давления (7 — с ГВВК) б — при получении технологического кислорода (95% О2) для схем / — трех давлений с предварительным аммиачным охлаждением и детандером 2 — двух давлений с предварительным аммиачным охлаждением и турбодетандером 5 — низкого давления с ГВВК 4 — низкого давления с отбором газообразного азота из НК Рис. 69. <a href="/info/1829718">Зависимость расхода энергии</a> на <a href="/info/16420">получение кислорода</a> к (сплошные линии) и <a href="/info/94122">расхода энергии</a> на <a href="/info/13656">процесс разделения</a> (штриховые линии) от Qo. (т]из =0,6) а — при <a href="/info/743620">получении технического кислорода</a> (99,5% Ог) для схем одного высокого или <a href="/info/145787">среднего давления</a> (I — с <a href="/info/681482">дросселированием воздуха</a> 2 —с дрос-селированием воздуха и <a href="/info/1113111">предварительным аммиачным охлаждением</a> 3 — с детандером) <a href="/info/1696521">двух</a> направлений 4 — с <a href="/info/1113111">предварительным аммиачным охлаждением</a> 5 — с детандером 6 — с <a href="/info/1113111">предварительным аммиачным охлаждением</a> и детандером) <a href="/info/54918">низкого давления</a> (7 — с ГВВК) б — при <a href="/info/1425499">получении технологического кислорода</a> (95% О2) для схем / — трех давлений с <a href="/info/1113111">предварительным аммиачным охлаждением</a> и детандером 2 — <a href="/info/1696521">двух</a> давлений с <a href="/info/1113111">предварительным аммиачным охлаждением</a> и турбодетандером 5 — <a href="/info/54918">низкого давления</a> с ГВВК 4 — <a href="/info/54918">низкого давления</a> с <a href="/info/1496107">отбором газообразного</a> азота из НК
    Стационарные кислородоазотные установки СКАДС-17 предназначены для производства небольших количеств газообразного кислорода и жидкого азота производительность их 17 м ,ч газообразного кислорода или 15 дм /ч жидкого азота. Наполнение баллонов кислородом под высоким давлением производится кислородным насосом. Технологическая схема установки СКАДС-17 приведена на рис. 48. Установка вырабатывает газообразный кислород по циклу высокого давления с дросселированием. На период пуска и получения жидкого азота включается поршневой детандер, и тогда установка работает по циклу высокого давления [c.160]

    Технологическая схема криптонового блока приведена на рис. 17. Помимо криптонового концентрата, в этом блоке можно получать около 500 м час технического кислорода чистотой не менее 99,2%. Газообразный кислород из основного блока поступает через патрубок Д в криптоновую колонну, состоящую из четырех з-веньев. В концентрационной части 1 колонны происходит обогащение стекающей вниз жидкости криптоном. В отгонной части 2 происходит дальнейшее обогащение криптоном стекающей флегмы. На участке 3, расположенном между концентрационной и отгонной зонами, происходит получение технического кислорода. В верхнюю часть криптоновой колонны вмонтирована дополнительная ректификационная колонна 4 для очистки паров технического кислорода от криптона. [c.52]

    Рассмотренные кислородные установки высокого давления являются громоздкими и в зиачительной степени устарели. В настоящее время установки технического кислорода модернизованы как в части технологической схемы, так и в части конструктивного оформления машин, теплообменников и блока разделения. Вместо осущительных баллонов с каустиком стали широко применять адсорберы, заполненные активным глиноземом. Освоено производство устан0 В0к газообразного кислорода производительностью 30 Ог в час с насосом жидкого кислорода, установок производительностью 100, 300 и 1000 Ог в час и жидкого кислорода для получения до 1 600 кг Ог в час. [c.266]

    Поршневыми компрессорами комплектуются стационарные и транспортные воздухоразделительные установки, построенные по схемам высокого, среднего и двух давлений для получения газообразных и жидких продуктов. Для указанных установок применяются воздушные поршневые компрессоры производительностью от 65 до 7500 мУч на давление от 6 до 220 кПсм . Сжатие технического кислорода и подача его в баллоны производится кислородными компрессорами высокого давления 150— 220 кГ/см . В некоторых случаях требуется давление 350 кПсм и выше. Производительность компрессоров высокого давления обычно не превышает 500—600 м ч. Компремирование технологического кислорода производится кислородными компрессорами низкого и реже среднего давления. [c.104]


Смотреть страницы где упоминается термин технологические схемы для получения газообразного кислорода: [c.160]    [c.187]    [c.50]    [c.175]   
Разделение воздуха методом глубокого охлаждения Том 1 Издание 2 (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород газообразный

Кислород получение

Кислород технологический

Технологическая схема получения



© 2025 chem21.info Реклама на сайте