Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

технологические схемы для получения жидкого азота

    Технологические схемы газификационных установок. Автомобильная газификационная установка АГУ-2М предназначена для транспортирования, хранения и газификации жидкого кислорода, азота, аргона на месте потребления. Обеспечивает получение абсолютно сухого газа. Автоматически поддерживает температуру газа в пределах (293 + 10) К. Безопасна в работе, обслуживается одним человеком. Наличие насоса погружного типа обеспечивает постоянную готовность установки к работе. Газификация жидкости осуществляется непрерывно. Оборудование установки смонтировано на платформе автомобиля и защищено фургоном. [c.208]


    Воздухоразделительные установки высокого давления с детандером предназначены для получения жидкого кислорода и азота. В схемах современны.х установок этого типа предусмотрено получение сырого аргона, а в некоторы.ч случаях и неоно-гелиевой смеси. Установки высокого давления с детандеро.м более экономичны по сравнению с установками для получения жидкого кислорода, работающими по циклу низкого давления, т. е. удельный расход энергии на получение 1 кг жидкого кислорода значительно ниже. Применение поршневых детандеров н компрессоров в установках высокого давления может привести к попаданию масла, применяющегося для смазывания цилиндров этих машин, в воздухоразделительный аппарат. Этот недостаток можно устранить заменой поршневого детандера турбодетандером и включением в схему установки блоков адсорбционной осушки или комплексной очистки воздуха. Наличие в этих установках машин, аппаратов и трубопроводов высокого давления усложняет обслуживание и ре.монт оборудования. Принципиальная технологическая схема установки высокого давления с детаиде-ро.м приведена на рис. 36. [c.112]

    Предназначена для получения из воздуха азота жидкого и азота газообразного повышенного давления. Технологическая схема этой установки, как и схема установки КЖ-1, основана на применении холодильного цикла высокого давления с поршневым детандером на температурном уровне 3— [c.201]

    Технологическая схема получения жидкого азота предусматривает сжижение газообразного азота, предварительно сжатого в турбокомпрессоре низкого давления 14 до 0,6 МПа, в результате испарения жидкого кислорода. [c.133]

    В зависимости от технологической схемы получения азото-водородной смеси (без промывки газа жидким азотом) она в различной степени может быть загрязнена метаном, образующимся в процессе газификации мазута. Присутствие в азото-водородной смеси СН4 и Аг (инертные газы) отрицательно влияет на синтез аммиака. Чем выше содержание инертных примесей в азото-водородной смеси, тем ниже эффективное давление синтеза, являющееся важнейшим фактором интенсификации процесса синтеза ЫНз. Эффективное давление определяется по формуле  [c.83]

    Разделение воздуха является достаточно сложной технической задачей, особенно если он находится в газообразном состоянии. Этот процесс облегчается, если предварительно перевести воздух в жидкое состояние сжатием, расширением и охлаждением, а затем осуществить его разделение на составные части, используя разность температур кипения кислорода и азота. Под атмосферным давлением жидкий азот кипит при —195,8 °С, жидкий кислород при —182,97 °С. Если жидкий воздух постепенно испарять, то сначала будет испаряться преимущественно азот, обладающий более низкой температурой кипения по мере улетучивания азота жидкость будет обогащаться кислородом. Повторяя процесс испарения и конденсации многократно, можно достичь желаемой степени разделения воздуха на азот и кислород требуемых концентраций. Такой процесс многократного испарения и конденсации жидкости и ее паров для разделения их на составные части называется ректификацией. Поскольку данный способ основан на охлаждении воздуха до очень низких температур, он называется способом глубокого охлаждения. Получение кислорода из воздуха глубоким охлаждением — наиболее экономично, вследствие чего этот метод нашел широкое применение в промышленности. Глубоким охлаждением и ректификацией воздуха можно получать практически любые количества дешевого кислорода или азота. Расход энергии на производство 1 кислорода составляет от 0,4 до 1,6 квт-ч (1,44-10 —5,76-10 дж) в зависимости от производительности и технологической схемы установки. [c.15]


    Технологическая схема получения аммиака при среднем давлении приведена на рис. VI.6. Азото-водородная смесь проходит вначале через конденсационную колонну 6, откуда подается сверху вниз в колонну синтеза 2. Теплота реакции отводится за счет котла-утилизатора 1, через который при температуре 400 °С проходит азото-водородо-аммиачная смесь, охлаждается и возвращается в колонну синтеза. В теплообменнике, смонтированном внутри колонны, смесь охлаждается до 90—100 °С и поступает в водяной холодильник 3, а далее в сепаратор 4. В водяном холодильнике при 30 МПа конденсируется только часть аммиака. Газ турбокомпрессором 5 подается в конденсационную колонну 6, часть аммиака из колонны циркулирует через аммиачный холодильник 7, в котором охлаждается и возвращается в конденсационную колонну, что способствует лучшему выделению аммиака из газовой смеси. Жидкий аммиак из сепаратора и с низа конденсационной колонны поступает на склад. [c.266]

    Предназначена для получения из воздуха азота жидкого и азота газообразного повышенного давления. Технологическая схема этой установки, как и схема установки КЖ-1> основана на применении холодильного цикла высокого давления с поршневым детандером на температурном уровне 3— 5 °С. Очистка от двуокиси углерода и осушка воздуха осуществляются так же, как в установке КЖ-1. [c.201]

    Установки для получения жидкого водорода, гелия. На рис. 130 приведена технологическая схема установки ВО-2 для получения 18,2 кг/ч переохлажденного параводорода, работающей по циклу высокого давления с дросселированием и двумя уровнями предварительного охлаждения азота. В качестве устройства, позволяющего [c.152]

    Использование для сжатия и расширения воздуха турбомашин (турбокомпрессора и турбодетандера) с высоким к. п. д. дает возможность создавать на основе этого цикла установки для получения больших количеств жидкого воздуха, жидкого азота или жидкого кислорода значительно большей производительности, чем при использовании поршневых машин. В цикле низкого давления существенно упрощается технологическая схема, [c.84]

    Показателем нормальной работы узла ректификации является получение максимального количества кислорода заданной концентрации при минимальном содержании кислорода в азоте, отходящим из верхней колонны. Улучшению процесса ректификации способствует понижение давления в верхней и нижней колонне. Давление в верхней колонне определяется в основном сопротивлением на линии выхода отбросного азота, а в нижней колонне — давлением в верхней колонне, уровнем жидкого кислорода в конденсаторах и концентрацией продукционного кислорода и азотной флегмы (способы регулирования отдельных параметров нормального режима приведены ниже, в табл. П-8 и П-9. Указанные в этих таблицах обозначения арматуры даны по чертежу технологической схемы блока разделения воздуха завода-изготовителя). [c.119]

    Использование для сжатия и расширения воздуха турбомашин (турбокомпрессора и турбодетандера) с высоким к. п. д. дает возможность создавать на основе этого цикла установки для получения больших количеств жидкого воздуха, жидкого азота или жидкого кислорода значительно большей производительности, чем при использовании поршневых машин. В цикле низкого давления существенно упрощается технологическая схема, облегчается обслуживание, повышаются надежность работы и взрывобезопасность установки.  [c.82]

    Установка ЖА-1 (Аж-1,6) предназначена для одновременного получения 1600 кг/ч жидкого 98%-ного азота и до 700 м /ч газообразного азота той же концентрации. В установке ЖА-1 имеется только одна (нижняя) ректификационная колонна. Технологическая схема установки ЖА-1 приведена на рис. 4.45. [c.227]

    По технологической схеме установка К-12Ж (БР-1Ж) идентична установке Кт-12 (БР-1), но имеет дополнительно блок циркуляционных теплообменников, выполненных из оребренных медных трубок два азотных турбокомпрессора (используются серийные турбокомпрессоры КТК-12,5/35 для кислорода) два двухступенчатых азотных турбодетандера ТДР-29/30 цеолитовый блок осушки. Установка может работать как в газожидкостном, так и в газовом режиме. При газовом режиме она выдает те же продукты разделения, что и установка Кт-12 (БР-1). При получении жидкого кислорода криптоновая колонна не работает, так как весь криптон отводится с жидким кислородом. Давление азота в циркуляционном цикле до и после турбодетандеров составляет соответственно 30 и 1,25 кгс/см -, количество азота, отбираемого из середины регенераторов в циркуляционный цикл, равно 1000— [c.233]

    По одной из технологических схем предварительно очищенный и осушенный природный газ охлаждается в других теплообменниках до температуры —140° С, затем полученная газожидкостная смесь проходит дроссель и подается для разделения в ректификационную колонну. Из верхней части этой колонны выходит смесь гелия с азотом, а из нижней части —сухой газ, состоящий в основном из метана. Для охлаждения ректификационной колонны используют жидкий метан и поддерживают температуру в верхней ее части на уровне —191° С. Смесь гелия с азотом из ректификационной колонны поступает в сепаратор и затем в теплообменник, где она охлаждается жидким азотом и разделяется в ледую-щем сепараторе на гелиевый концентрат, содержащий 85 % гелия, и азот. Затем гелиевый концентрат очищают от водорода, осушают окисью алюминия и компримируют да 20 МПа. Подготовленный таким образом гелиевый концентрат охлаждают до —207° С и после сепарации получают газовую фазу, содержащую 99,5 % гелия. После очистки ее активированным углем, охлаждаемым жидким азотом, получают гелий с чистотой не менее 99,88 %. [c.92]


    В первом томе справочника под общей редакцией Е. Я. Мельникова приведены физико-химические свойства газообразных и жидких веществ, применяемых и получаемых на предприятиях азотной промышленности. Описаны различные методы получения и очистки технологических газов (азото-водородной смеси, синтез-газа). Рассмотрены физикохимические основы процессов синтеза аммиака и метанола, промышленные схемы и принципы автоматизации их производства даны некоторые методы технологических расчетов, приведены характеристики катализаторов, описана применяемая аппаратура. [c.4]

    Анализ технологических схем воздухоразделительных установок показал, что при существующих типах и номенклатуре установок турбодетандеры целесообразно использовать прежде всего в установках, предназначенных для получения технического газообразного кислорода, азота или обоих продуктов разделения воздуха, работающих по циклу среднего давления с детандером. На характерные для установок среднего давления с насосом жидкого кислорода параметры воздуха рабочее давление 4—6 Мн/м , давление после детандера около 0,6 Мн/м и температура воздуха перед машиной около 160—170° К создан ряд промышленных турбодетандеров, основные характеристики которых приведены в приложении 8. Адиабатический к. п. д. этих малых турбодетандеров составляет 68- 72%. [c.254]

    Данный способ требует охлаждения газов до очень низкой температуры, при которой воздух переходит в жидкое состояние. Поэтому такой способ получения кислорода часто называют способом глубокого охлаждения . В настоящее время получение кислорода из атмосферного воздуха способом глубокого охлаждения является наиболее экономичным, вследствие чего имеет широкое промышленное применение. Этот способ позволяет получать кислород (или азот) в любых количествах и по очень низкой цене, затрачивая при этом электроэнергии всего 0,5—1,6 квт-ч на 1 кислорода, в зависимости от размеров и технологической схемы установки. Описанию этого способа и посвящена настоящая книга. [c.13]

    Классификация способов получения простых веществ. Если подразделить способы производства простых веществ в соответ < твии с состояниями, в которых существуют элементы, и с их химическими свойствами, то получится схема, представленная в табл. 3.14. Замечательным примером технологического про цесса, не сопровождающегося химическими превращениями является способ разделения жидкого воздуха на азот, кислород и инертные газы путем перегонки. Процессы, включающие химические реакции, согласно общей классификации, учитывающей характер этих реакций, можно разбить на три класса восстановление, окисление и пиролитическое разложение (пи ролиз). Большую часть простых веществ получают с помощьк> реакций восстановления. Дальнейшая более детальная класси фикация позволяет распределить эти процессы по подклассам 2.1—2.5. Обычно большинство металлов встречается в виде ка тионов, да и многие неметаллы (за исключением галогенов) имеют положительные степени окисления, поэтому в результате передачи им электронов в процессе восстановления достигается нулевая степень окисления. [c.138]

    Стационарные кислородоазотные установки СКАДС-17 предназначены для производства небольших количеств газообразного кислорода и жидкого азота производительность их 17 м ,ч газообразного кислорода или 15 дм /ч жидкого азота. Наполнение баллонов кислородом под высоким давлением производится кислородным насосом. Технологическая схема установки СКАДС-17 приведена на рис. 48. Установка вырабатывает газообразный кислород по циклу высокого давления с дросселированием. На период пуска и получения жидкого азота включается поршневой детандер, и тогда установка работает по циклу высокого давления [c.160]

    На рис. .4 приведена технологическая схема получения ГХБД в кипящем слое катализатора-теплоносителя [214]. Бутан из емкости 1 передавливается сжатым азотом в сепаратор 2. Жидкая фаза из сепаратора направляется в кожухотрубчатый теплообменник 3, где подогревается до 60—90 °С. Газообразный [c.176]

    На рис. 3. 9 приведена технологическая схема получения бедного концентрата. Воздух, охлажденный в регенераторах, поступает в колонну 1 высокого давления воздухоразделительного аппарата, где происходит предварительное разделение с получением азота и жидкости, обогащенной кислородом. Окончательное разделение воздуха на азот и кислород осуществляется в верхней колонне 2 низкого давления жидкий кислород, в котором концентрируются криптон и ксенон, стекает в нижнюю часть колонны 2, откуда выводится в основной 3 и выносной 4 конденсаторы. В конденсаторе 3 происходит полное испарение кислорода, который возвращается в колонну 2] в конденсаторе 4, куда направляется около половины произведенного кислорода, небольшое количество кислорода остается жидким, причем в жидкости концентрируются углеводороды. Поток из конденсатора 4 проходит через сепаратор 5, где отделяется жидкость, которая непрерывно выводится из установки через продувочную линию таким способом обеспечивается дополнительная очистка газа от примесей углеводородов. Газообразный кислород, содержащий криптон и ксенон, из колонны 2 и сепаратора 5 вводится в криптоновую колонну 6, где происходит ректификация смеси с получением в качестве нижнего продукта бедного криптонового концентрата, содержащего0,1—0,2% криптона и ксенона, и газообразного кислорода, который, направляется в регенераторы. Рабочее флегмовое чирло (т. е. отношение количеств стекающей жидкости и поднимающегося пара) в верхней части криптоновой колонны составляет 0,11—0,12. Флегма получается в конденсаторе, расположенном наверху криптоновой колонны 6 в межтрубное пространство конденсатора направляется жидкость из куба нижней колонны J, прошедшая адсорберы 7 и переохладители 8, образующиеся в конденсаторе пары возвращаются в верхнюю колонну 2 воздухоразделительного аппарата. [c.126]

    Получение концентрированной азотной кислоты методом прямого синтеэа основано на взаимодействии жидких оксидов азота с водой и кислородом под давлением и прн повышенной температуре. Технологическая схема производства азотной кнслоты из нитрозных газов, полученных окислением NHi кислородом воздуха, включает следующие стадии  [c.100]

    Цикл среднего давления с расширением воздуха в турбодетандере и циркуляционным холодильным циклом. Для получения больших количеств жидких продуктов разделения воздуха в НПО КРИОГЕНМАШ разработана установка КжАжААрж-6, технологическая схема которой базируется на воздушном холодильном цикле среднего давления, дополненном азотным холодильным циркуляционным циклом также среднего давления. Потери холода в установке покрываются за счет ступенчатого расширения основного количества циркуляционного азота в детандерных ступенях, работающих на трех температурных уровнях, расширения большей части воздуха в воздушном одноступенчатом турбодетандере и введения предварительного охлаждения части циркуляционного азота и воздуха с помощью криоагента, поступающего из холодильной станции. Комплексная очистка всего переребатываемого воздуха от примесей влаги, двуокиси углерода и углеводородов осуществляется на синтетических цеолитах. [c.28]

    На рис. 5.6 приведена технологическая схема синтеза аммиака. Азотоводородная смесь поступает в реактор 1. Нафетая за счет теплоты экзотермической реакции прореагировавшая реакционная смесь охлаждается в трех теплообменниках. В первом из них 2 газ, состоящий из полученного аммиака и непрореагировавших азота и водорода, охлаждается водой. Во втором теплообменнике 3 газ отдает тепло для подофева исходной смеси, направляемой в реактор. Окончательное охлаждение происходит в воздушном холодильнике 4, после чего частично сконденсировавшийся аммиак отделяется в сепараторе 5 и собирается в сборнике 6 как продукт Но охлаждение до температуры окружающей среды недостаточно для полного вьщеления аммиака, и газ из сепаратора направляется в конденсационную колонну 8. Здесь газ охлаждается до -3 -2 фадусов, и полученный аммиак отделяют от газа, в котором его остается 3-5%, и направляют в сборник. Охлаждение осуществляют за счет испарения жидкого аммиака в испарителе 9 (подобно аммиачному холодильнику), причем испаритель может быть конструктивно совмещен с конденсационной колонной. Оставшийся холодный газ подогревают в теплообменнике 3 и возвращают в колонну синтеза 1. Обеспечивают циркуляцию потока циркуляционным компрессором 7, в который перед этим добавляют свежую азотоводородную смесь. На продемонстрированной схеме штриховыми линиями вьщелены элементы функциональной схемы. Отметим, что элемент В циркуляции газа встроен в элемент Б — выделение аммиака происходит перед и после циркуляционного компрессора. [c.241]

    Технологическая схема глубокого охлаждения газа и его промывки жидким азотом с целью удаления метана часто основывается на нрименении принципа дроссельного эффекта и в этом случае мало чем отличается от схемы извлечения СО тем же поглотителем, изложенной выше (стр. 396). Так, по одной из схем получения азотоводородной смеси из отходящего газа платформинга, содержащего около 85% Нз, 5% СН, и 10% гомологов метана, исходный газ вначале промывается раствором едкого натра (с целью удаления следов НаЗ и СОз), а затем подвергается осупше активированной окисью алюминия (рис. 86). Осушенный газ проходит ступенчато несколько секций теилообменника, в котором охлаждается потоком обратного газа (азотоводородной смесью). После каждой ступени охлаждения газ отводится в сепаратор для отделения углеводородного конденсата. Конденсат 4 и С5 используется в качестве жидкого топлива (вне установки), [c.401]

    Лабораторные ожижители водорода Технологическая схема и конструкция лабораюрных ожижителей определяются их назначением. Как правило, они рассчитываются на сжижение электролитического водорода, с использованием для получения холода цикла высокого давления с однократным дросселированием, а для предварительного охлаждения - жидкого азота со стороны. [c.85]

    Начиная с 1962 г. Свердловский кислородный завод Средне-уральского совнархоза выпускает унифицированную установку УКА-0,11 (АжК-0,02), заменяющую ранее выпускавшиеся установки ЖАК-80, ГЖАК-20, ЖА-20 и СКАДС-17. Азото-кислородная установка УКА-0,11 предназначена для получения газообразного кислорода, газообразного азота или жидкого азота (одновременно можно получить только один из указанных продуктов). Установка работает по циклу высокого давления с поршневым детандером. Технологическая схема установки показана на рис. 50. На режиме получения газообразного кислорода установка работает так же, как и описанная выше установка СКАДС-17. [c.164]

    Технологическая схема установки дана на рис. 4.12. Атмосферный воздух засасывается через фильтр /9 в I ступень компрессора 18 и сжимается последовательно в пяти ступенях, проходя по-<У10 каждой из них холодильники и масло-влагоотделители. Сжатый до давления 200 кгс/см (при пуске или получении жидкого кислорода и азота) или 100—ПО кгс/см (при получении газообразного кислорода или азота) воздух направляется в ожижитель 13, установленный в блоке разделения, где охлаждается отходящим -отбросным азотом до плюс 5 — плюс 10 °С. При этом содержащиеся в воздухе водяные пары конденсируются и собираются во влагоотделителе, установленном перед блоком очистки, а затем удаляются продувкой. Далее воздух поступает в один из адсорберов 21 блока очистки и осушки, где двуокись углерода, влага и ацетилен поглощаются цеолитом. Очищенный от этих примесей воздух затем вновь направляется в блок разделения. При получении жидких кислорода или азота поток воздуха разделяется на два один из них-(до 56%) направляется в поршневой детан- [c.168]

    Установка (рис. 4.30) снабжена системой иредварительногс азотно-водяного охлаждения турбокомпрессорного воздуха и предназначена для одновременного получения технологического кислорода, технического кислорода, чистого азота, криптоно-ксеноново-го концентрата и неоно-гелиевой смеси. В данной установке для повышения взрывобезопасности увеличена проточность аппаратов,, в которых возможно накапливание взрывоопасных примесей при выпаривании кислорода. Схема получения криптоно-ксенонового концентрата изменена так, чтобы увеличить проточность конденсатора 10 в результате отмывки криптоно-ксенона из жидкого кислорода в колонне 17. Увеличена также проточность нижнего конденсатора 18 путем включения в схему витого конденсатора-испарителя 19. Повышена степень циркуляции кислорода в конденсаторах 8, 9 и 10, а также возможность ее регулирования за счет изменения высоты расположения конденсаторов относительно верхней ректификационной колонны. Благодаря. этому относительный кажущийся уровень жидкого кислорода в конденсаторах может быть увеличен до 0,6—0,7 высоты трубок. [c.199]

    Применение этого метода очистки синтез-газа является наиболее оправданным, когда в технологической схеме на стадии очистки газа от HjS и Oj используется очистка смеси холодным метанолом (процесс Ректизол ) [114]. При использовании холодного метанола уменьшается количество циркулирующего раствора и возрастает селективность растворителя, так как растворимость Oj с понижением температуры резко возрастает. Сочетание процессов очистки смеси холодным метанолом и промывки ее жидким азотом позволяет существенно повысить технико-экономическую эффективность всего комплекса получения азотоводородной смеси для цикла синтеза аммиака. [c.90]

    Технологическая схема отделения хранения, испарения и осушки хлора представлена на рис. 3. Жидкий хлор из железнодорожных цистерн (или из цеха получения жидкого хлора по трубопроводу) подают в емкость 4 (хранилище). Из хранилища под собственным давлением или под давлением инертного газа (азота) жидкий хлор непрерывно поступает в испаритель 5 и испаряется в змеевике. Последний расположен в горячей воде, которая подогревается острым паром. Часть испаренного хлора из буферной емкости 6 поступает в отделение получения хлорноватистой кислоты, а остальное — в колонну 7 для осушки концентрированной серной кислотой. Серную кислоту из емкости 9 непрерывно подают насосом в колонну 7 в емкость она возвращается самотеком. Осушенный хлор отделяют от брызг серной кислоты в брызгоуловите-ле 8 и фильтре 10 и подают в отделение хлорирования пропилена. После того как израсходуется весь запас жидкого хлора из хранилища, оставшуюся смесь газообразного хлора и азота (отходящие газы) направляют в колонну 3 для поглощения хлора (санитарную колонну). Колонна орошается раствором NaOH, подаваемым из емкости 1. [c.32]

    Схема технологической машины показана на рис. 41. Сжатый в компрессорной машине воздух поступает в ожижитель влаги 6 и охлаждается до температуры 278—280° К- При получении жидких кислорода и азота давление воздуха составляет 18—-20 Мн1м , при получении газообразного кислорода 13—14 Мн1м , при получении газообразного азота 15,5—18 Мн м . Охлаждение воздуха в ожижителе производится газообразными продуктами разделения. Из ожижителя воздух направляется в отделитель влаги 4, затем в один из баллонов, заполненных синтетическим цеолитом МаХ, который обеспечивает осушку воздуха до точки росы 203° К, очистку от двуокиси углерода до остаточного содержания не более 2 см м и практически полное удаление ацетилена при концентрациях, обычно наблюдаемых в воздухе. В режиме очистки один баллон работает 10 ч. Затем поток воздуха переключается на другой баллон, а первый подвергается регенерации адсорбента азотом в количестве 0,022—0,036 м сек, нагретым в электронагревателе 3 до температуры 653—673° К. Регенерация протекает примерно в течение 3 ч и заканчивается по достижении температуры регенерирующего газа на выходе из осушительного баллона не ниже 473° К. После регенерации адсорбент охлаждается в течение 6 ч тем же потоком азота при выключенном электроподогревателе. [c.56]

    Стабилизацию режима работы теплообменников можно осуществить, применяя байпасирование азота. На рис. 7 показана упрощенная технологическая схема устанрвки для получения жидкого кислорода с возможными линиями автоматического регулирования [c.383]

    Полученные на установке жидкие криопродукты сливают в стационарные емкости, имеющие массу хранимого продукта, т кислорода — 2000, азота — 900, аргона — две емкости по 15 т каждая. Основной режим работы установки предусматривает получение в качестве главного продукта жидкого О2 и побочного жидкого N2. При необходимости соотношение между получаемыми жидкими О2 и N2 может быть изменено в сторону увеличения производства жидкого N2 при уменьшении доли жидкого О2. В [10, 19, 20] произведено сравнение ВРУ, использующей холод регазифицируемого СПГ, и обычной ВРУ, схемы которых базируются на использовании циклов низкого давления с применением циркуляционного азотного цикла среднего давления. Основные данные этих установок и характеристики технологических потоков представлены в табл. 5.32. [c.391]


Смотреть страницы где упоминается термин технологические схемы для получения жидкого азота: [c.160]    [c.88]   
Разделение воздуха методом глубокого охлаждения Том 1 Издание 2 (1973) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Азот получение

Технологическая схема получения



© 2025 chem21.info Реклама на сайте