Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород произведение

    Как указано выше, жирные кислоты, образующиеся при гидролизе животных жиров и растительных масел, весьма разнообразны по химическому составу и представляют соединения с прямой цепью, состоящей только из атомов углерода, водорода и кислорода. Произведенные токсикологические исследования жирных кислот имеют больше теоретическое, чем практическое значение, но получившиеся при этих исследованиях данные касаются связи между химическим строением и токсическим действием и представляют значительный интерес. [c.152]


    Имеются некоторые надежды на то, что многие из этих трудностей могут быть преодолены путем учета конфигурационного взаимодействия, поскольку, как мы увидим в дальнейшем, включение достаточного числа конфигураций в волновую функцию всегда приводит к хорошим волновым функциям. Существенным практическим вопросом остается число конфигураций, которые необходимо рассмотреть. В настоящее время такой подход представляется не безнадежным (см., например, вычисление энергии основного состояния кислорода, произведенное Меклером [24]). [c.350]

    Когда мы говорим, что реакция бимолекулярна , это значит, что мы акцентируем внимание на столкновениях двух молекул, как это происходит, в частности, при протекании реакции (И, 13). Сказать же, что реакция имеет второй порядок , означает отметить пропорциональность ее скорости произведению двух концентраций, не сообщая подробной информации о механизме взаимодействия. Понятия порядка и молекулярности не обязательно означают одно и то же. Например, газофазное окисление N0 кислородом имеет третий порядок, но маловероятно, чтобы оно было тримолекулярным, т. е. шло с одновременным столкновением трех молекул. [c.37]

    Если по условиям работы имеется основание ожидать, что во время остановки произойдет концентрирование опасных примесей в жидком кислороде, то следует немедленно полностью слить жидкость из конденсатора. Естественно, что полный слив жидкого кислорода также должен быть произведен, если анализ показал концентрирование опасных примесей. [c.158]

    При начальной температуре 373 К 1 моль кислорода совершает цикл в идеальной машине Карно. Сначала он расширяется изотермически до двукратного объема, затем расширяется адиабатически до трехкратного объема (по сравнению с первоначальным), затем сжимается изотермически до такого объема, чтобы в результате последуюш,его адиабатического сжатия вернуться к первоначальному состоянию. Приняв 7 = Ср Су = 1,4, рассчитайте работу, совершенную газом в каждой части цикла работу, произведенную за счет теплоты в цикле, и КПД цикла. [c.73]

    Анализ для определения отдельных элементов, составляющих соединения органической массы угля, т. е. количество углерода, водорода, кислорода, азота, серы и т. д., осуществляют методами, подобными методам, применяемым в органической химии. Некоторые из перечисленных элементов представляют больший или меньший интерес в отношении того, что касается процесса коксования и конечного качества получаемого кокса. Знание содержания серы представляется важным ввиду ее влияния на качество произведенного кокса, используемого в доменной печи. Содержание фосфора должно быть ограниченным при производстве определенных сортов электрометаллургических коксов. Напротив, азот, присутствующий в угле, не оказывает особого влияния, так же как и хлор, на производство кокса. Тем не менее опишем вкратце порядок нормального анализа для каждого из этих элементов для того, чтобы составить более полное представление об исследовании углей с помощью методов их элементного анализа. [c.48]


    Окисление СО в нестационарном режиме на нанесенном платиновом катализаторе изучалось также в работе [21]. На вход без-градиентного изотермического реактора подавали реакционную смесь, состав которой периодически изменялся — в течение первой половины периода подавали смесь оксида углерода с аргоном, в течение второй — смесь кислорода с аргоном. Процесс проводили при температуре 60°С, концентрации СО — О—2%, Оа — О—3%. Максимальная длительность цикла 3 мин. Оказалось, что при нестационарном способе ведения процесса может быть достигнуто 20-кратное увеличение скорости реакции по сравнению со стационарными условиями. Максимальный выигрыш имел место при длительности цикла 1 мин. Результаты экспериментов объясняются так. Предполагая, что образование СОа определяется главным образом скоростью взаимодействия адсорбированных СО и Оа, можно сделать вывод, что эта скорость максимальна в случае примерного равенства концентраций поверхностных форм [ OZ] и [0Z]. Тогда значительное увеличение наблюдаемой скорости образования СОа в нестационарном режиме можно объяснить тем, что в этом случае поверхностные покрытия сохраняли свои значения вблизи этих оптимальных величин. В то же время при стационарном способе ведения процесса степени покрытия [ OZ] и [0Z], как показывают независимые стационарные эксперименты, значительно отличаются по величине, и их произведение мало. [c.37]

    Известно, что при множестве движущихся молекул (или атомов) число частиц, обладающих скоростью, лежащей в данном интервале значений, остается постоянным. Теоретические подсчеты, произведенные Максвеллом в 1860 г., показали, что молекулы газа по скоростям движения при данной температуре распределяются строго определенным образом. В качестве примера приведем данные распределения по скоростям движения для молекул кислорода при 273,16 К (табл. 1). [c.20]

    Количественную обработку хроматограмм, содержащих узкие пики, провести методом внутренней нормировки по высотам пиков (см. VII.13). Хроматограммы, содержащие широкие пики, рассчитать по площадям пиков (см. VII. 12). Площади пиков определить как произведение высоты пика на полуширину. Для точных расчетов при нормировании как по площадям, так и по высотам пиков необходимо учитывать неодинаковую чувствительность катарометра к азоту н кислороду (поправочные коэффициенты см. табл. 7). [c.102]

    На основании уравнения реакции находим количество молей газа до пропускания искры, из которого после пропускания искры образовался моль газа. Для образования Z молей оксида азота (IV) потребовалось Z молей кислорода и 0,52 моля азота. Следовательно, до.реакции было (X + F + 1,5Z) моля газовой смеси мольной массой 30,4 г/моль. Массу этого количества газовой смеси можно представить как произведение количества молей на мольную массу. Вместе с тем масса газовой смеси равна 32 г  [c.36]

    Термодинамические расчеты, произведенные для всех возможных соединений германия и кремния, показывают, что при умеренных температурах (О—600° К) и при обычных парциальных давлениях кислорода наиболее устойчивыми соединениями являются гидратированные двуокиси изучаемых элементов [c.105]

    Инертные газы. В 1893 г. было обращено внимание на несовпадение плотностей азота из воздуха и азота, получаемого при разло-жени-и азотных соеди-неннй литр азота из воздуха весил 1,257 г, а полученного химическим путем—1,251 г. Произведенное для выяснения этого загадочного обстоятельства очень точное изучение состава воздуха показало, что после удаления всего кислорода и азота получался небольшой остаток (около 1%), который ни с чем химически не ре- [c.40]

    Радикал может исчезнуть и в результате реакции с другим радикалом, приводящей к образованию электронной пары и насыщению валентности. Скорость обрыва цепей в этом случае пропорциональна произведению концентраций радикалов (квадратичный обрыв). Если в результате реакции радикала с молекулой получаются два или более радикалов, то цепь разветвляется. Так, атом водорода, реагируя с молекулой кислорода, дает радикал ОН и радикал "О" (атом кислорода). Очевидно, этот процесс приводит к тому, что первичная цепь разветвляется и получается три цепи. [c.318]

    Этин, ацетилен ( H = GH), — это бесцветный газ, в чистом виде без запаха, технический — с неприятным запахом. В отличие от этана и этена этин немного растворим в воде и хорошо растворяется в ацетоне. Так как сам ацетилен при сжатии взрывается, а его раствор в ацетоне — нет, то транспортировка проводится в стальных баллонах, содержащих пористый материал, пропитанный упомянутым раствором. С воздухом ацетилен образует взрывчатую смесь. Чистый ацетилен горит желтым коптящим пламенем, потому что при горении высвобождается большое количество сажи из-за высокого процентного содержания углерода в молекулах ацетилена. В промышленности ацетилен получают гидролизом дикарбида кальция (СаСг), полученного сплавлением кокса с оксидом кальция, либо частичным окислением или гидролизом метана или низших алканов. Часть произведенного ацетилена (около 10%) расходуется (в смеси с кислородом) на сварочные работы (температура пламени горелки достигает 3000 °С), остальное используется для получения хлорированных углеводородов, акриловой кислоты и ее производ- [c.250]


    Применив правило произведения растворимости, объясните отсутствие осадка в случае действия на соль марганца (II) сероводородной водой и образование осадка при действии сульфида аммония. Осадок сульфида марганца (II) размешайте стеклянной палочкой он буреет вследствие окисления кислородом воздуха. Напишите уравнение реакции, учитывая, что получается тетрагидроксид марганца и свободная сера. Реакция протекает с участием воды. [c.197]

    Экспериментальные исследования показали, что реальные газы не подчиняются законам идеальных газов. Максимальные отклонения от идеального поведения наблюдаются при высоких давлениях и при низких температурах. При этих условиях объем системы становится относительно малым и собственный объем молекул составляет заметную часть общего объема. Кроме того, когда молекулы находятся на близких расстояниях друг от друга, экспериментально измеренное давление оказывается значительно меньше расчетного идеального значения это происходит в результате увеличения сил межмолекулярного притяжения. Характер и степень отклонений в поведении различных газов от идеального различны (рис. 8). Для идеальных газов произведение давления на объем рУ при постоянной температуре остается постоянным. Поэтому на графике зависимость рУ от р при постоянной температуре изображается прямой линией, идущей параллельно оси абсцисс (р). Поведение водорода, кислорода и диоксида углерода отклоняется от поведения идеального газа, причем характер отклонения для этих трех газов различен. Как и следовало ожидать, особенно сильные отклонения происходят при высоких давлениях. В точности такой же по виду график получается, если в качестве ординаты взять не просто рУ, а отношение рУ/(пЯТ) — так называемый коэффициент сжимаемости. Различие состоит лишь в следующем если на рис. 8 все кривые пересекаются при значении 22,4 л-атм, то на графике коэффициента сжимаемости (рис. 9) кривые пересекаются при значении ординаты, равном единице, так как для идеального газа рУ/ пНТ)= 1,0. [c.21]

    Нормальную концентрацию выражают числом грамм-эквивалентов вещества в 1 л раствора. Грамм-эквивалентом (г-экв) называют число граммов вещества, химически взаимодействующее без остатка с 1 г-атомом водорода (1,008 г) или с половиной грамм-атома кислорода (8,00 г). Грамм-эквивалентом оснований и солей называют такую их массу, которая содержит столько граммов данного металла, сколько требуется его для замещения 1 г-иона водорода кислоты (или воды). Чтобы вычислить грамм-эквивалент, нужно разделить грамм-молеку-лярную массу 1) в случае кислоты — на проявленную ею основность в данной реакции, 2) в случае основания — на число групп ОН, принимающих участие в реакции,, 3) в случае соли — на произведение числа ионов металла и его валентности. [c.33]

    Обработка палыгорскита известью, произведенная по первому способу, приводит к уменьшению тепловых эффектов, выделяющихся при смачивании образцов водой. Все образцы откачивали равное время при одинаковых условиях (табл. 7). Уменьшение теплот смачивания палыгорскита, обработанного известью, происходит за счет действия двух факторов — уменьшения доступной для адсорбции поверхности минерала (агрегация в пачки, частичное смыкание цеолитных каналов) и изменения природы поверхности минерала в результате взаимодействия с известью. Известно, что поверхность палыгорскита характеризуется энергетической гетерогенностью [321, 353, 354]. Неоднородность поверхности связана с наличием активных центров различной природы — октаэдрические катионы на боковых стенках каналов, обменные катионы, атомы кислорода на внутренней поверхности каналов и на внешней поверхнос-сти игольчатых частичек минерала, гидроксильные группы, специфика геометрии самой поверхности палыгорскита. Наиболее вероятно, что многие из этих адсорбционных центров, особенно кислотного характера, вначале поверхностного взаимодействия с гидроокисью кальция блокируются. При этом новообразования обладают меньшей энергетической активностью. Такой вывод кажется вполне закономерным, если учесть падение интенсивности эндоэффектов на термограммах палыгорскита обработанного известью. Эндоэффекты 120, 150, 280° и широкий максимум 470—500° появляются на кривых ДТА палыгорскита за счет удаления, соответственно, молекул воды, свободно размещенных в цеолитных каналах молекул воды, адсорбированной на поверхности кристаллов по наружным разорванным связям связанных с октаэдрическими катионами на боковых стенках каналов и постепенного исчезновения структурных гидроксилов [359]. Таким образом, снижение интенсивности перечисленных эндоэффектов, наряду с уменьшением теплот смачивания, свидетельствует о преимущественном взаимодействии Са(0Н)2, прежде всего, по энергетически наиболее выгодным центрам внешней и внутренней поверхности минерала. Очень интересно, что, несмотря на снижение энергетической активности поверхности палыгорскита, в результате частичного блокирования первичных центров неоднородности поверхности, общее количество связанной воды не уменьшается и выделение ее идет за счет дегидратации гидратных новообразований. Этот вывод можно сделать на основании сравнения потерь при прокаливании обработанных и не обработанных известью образцов и сопоставления нх с характером кривых ДТА. Как видно из табл. 7, потери веса в интервале 80—400° С у обработанных известью образцов не уменьшаются, а интенсивность присущих палыгорскиту эндоэффектов понижается. Общая протяженность [c.134]

    Так как в разбавленных растворах произведение [А1]2[0]з постоянно, то с ростом концентрации алюминия содержание кислорода должно монотонно уменьшаться. Однако при больших концентрациях алюминия [c.103]

    Гидроксид Сг(ОН)2 коричневого или желтого цвета осаждается из р-ров солей Сг(П) щелочами в отсутствие кислорода произведение р-римости 2,0-10" не раств. в р-рах щелочей и разб. к-тах, медленно раств. в конц. к-тах на воздухе быстро окисляется  [c.311]

    Грунер весьма интересно трактует вопрос о том, как теория Паулинга.о силе связи в силикатах может быть увязана с вопросом об устойчивости этих соединений, иначе говоря, с условиями образования их в природе. Величины электроотрицательности элементов, имеющих важное значение для силикатов, изменяются в широких пределах от 0,7 (цезий) до 4,0 (фтор). Наиболее часто устойчивые соединения образуют элементы с сильно отличающимися значениями электроотрицательности. Если кремний (1,8) связывается с кислородом (3,5), то разница между значениями электроотрицательности, которую можно принять за меру энергии реакции,, будет равна 1,70. В ортоклазе KAlSisOe электроотрица- тельность калия равна 0,8, алюминия—1,5, трех ионов кремния —3-1,8. Суммарная электроотрицательность этих трех катионов равна 7,7 иначе говоря, средняя электроотрицательность катионов в ортоклазе равна 1,54 против 3,5 в кислороде. На основании величины разности между этими последними (1,96) можно заключить, что структура ортоклаза устойчивее структуры кварца при высоких температу-pax . Если силикатные минералы, встречающиеся в природе, расположить по возрастающим значениям энергии реакции, начиная с наиболее низкой (1,70) для кварца до наиболее высокой (2,73) для кальциевых ортоклазов (ларнит), то полученный при этом ряд величин покажет условия кристаллизации силикатов от наиболее низких до. наиболее высоких температур. Весьма важную поправку, определяющую структурные (координации онные) факторы в этой системе, Бюргер назвал фактором связи этот фактор для кварца, в силу способа и числа соединений между тетраэдрами [SiQJ, равен единице для каждого иона, отличного по прочности связи и по координации относительно кислорода. Произведение средней электроотрицательности и фактора связи, т. е. энергетический индекс, представляет реальную характеристику условий стабильности. Силикаты, свойственные сухим магмам, имеют более низкие энергетические индек- [c.19]

    Исследования конверсии метана с кислородом, произведенные Падовани, Сальви и Фиумара [15], подтвердили двухстадийность этого процесса. Указанные авторы пришли к выводу, что последовательное протекание этих стадий происходит достаточно быстро, а в некоторых условиях и мгновенно, и что в данном процессе вторая его стадия — реакция Н2О и СО 2 с непрореагировавшим в первой стадии метаном — идет значительно быстрее, чем это можно ожидать из соотношения компонентов смеси. Высокие объемные скорости, пониженные температуры и недостаточная активность катализатора способствует раздельному протеканию стадий, увеличению содержания СО2 и Н2О в получаемом газе и возникновению местных перегревов. [c.155]

    Мулькэй [38] установил, что при постоянных поверхностных условиях индукционный период меняется обратно пропорционально произведению концентраций углеводорода и кислорода. Этот факт он объясняет повышением концентрации активных центров в результате начальной [c.319]

    Алгебраическая сумма всех зарядов на атомах (или алгебраическая сумма произведений чисел атомов на их степень окисления), входящих в состав молекулы, равна нулю. Очевидно, чт неизвестная степень окисления одного из атомов в молекуле может быть определена с помощью подобного равенства. Так, исходя из формулы гидроксиламина NHjOH, в молекулу которого входят три атома водорода ( + 3) и один атом кислорода (—2), нетрудно сделат . вывод, что для сохранения электронейтральности молекулы атом азота должен иметь степень окисления —1. Рассуждая подобным же образом, мы найдем, что степень окисления фосфора в [c.141]

    При вышеуказанных условиях произведение мольного потока кислорода (назовем его реагентом А) к поверхности частицы на тепло, выделенное одним молем иревращенного А [—(ДЯ ) ], равно тепловому потоку д, идущему от поверхности  [c.182]

    Преимущество применения в процессе газификации воздухокис-лородной смеси с 40%-ной концентрацией кислорода, вместо 95%-ногс видно при сравнении двух процессов по количеству произведенного потенциального тепла газа в них. [c.151]

    Из сравнения количеств произведенного тепла в обоих процессах видно, что при применении 40%-ной ВКС его получено в 1,5 раза больше. Эю объясняется использованием кислорода воздуха в воздухокислородной смеси, что приводит к экономии технического кислорода 95%-ной концентрации. [c.151]

    Произведенный расчет показал, что электронная плотность на атоме серы не зависит аг сгроения молекулы сульфоксида и во всех 3-сульфоксидах одинакова (да + 0,50), что хорошо согласуется с экспериментальными данными. Наиболее ярко выраженная донорная способность у р-орбиталей кислорода, наименьшая — непо-деленная л-электронная пара. Электронная плотность на кислороде без учета влияния кольца практически постоянная и не кор-релируется с экстракционной способностью сульфоксидов различного строения. [c.42]

    Получив теоретически такой результат, Пиз в 1938 г. в одной из даль-нейщих своих работ [21] экспериментально исследовал зависимость скорости окисления пропана от концентрации исходных веществ в статических условиях. Было найдено, что при 270° скорость действительно пропорциональна концентрации пропана в степени от 1 до 2 и не зависит от концентрации кислорода. Такое согласие выводов из схемы с экспериментальными данными сохраняется, однако, только прн низких температурах. Еще годом раньше (1937 г.) появились наблюдения Ньюитта и Торнса [22] о том, что при более высоких температурах (408° С, верхнетемпературная область) наиболее реакционноспособной является эквимолекулярная пропано-кислородная смесь, т. е. что скорость реакции пропорциональна произведению концентраций пропана и кислорода. Пиз поэтому также повторил свои опыты при более высоких температурах (до 400°). При этом в согласии с данными Ньюитта оказалось, что в этих условиях скорость реакции зависит от концентраций и пропана и кислорода в степени немного большей единицы. Таким образом, в верхней и нижней температурной областях медленного окисления пропана была констатирована различная зависимость скорости реакции от концентрации исходных веществ. Это было воспринято, как подтверждение различного механизма окисления углеводородов в этих двух областях. [c.104]

    В ульдегпллх и котопах атом кислорода свя ан о- и л-связями с одним и тем же атомом углерода. Вследствие высокой иоля-ри. уемости л-свя.чь сильно смещена в направлении более электроотрицательного атома кислорода. Несмотря иа то что длины связей С—О и С —О равны соответственно 0,143 и 0,121 нм, дипольный момент (который, как известно, является произведением заряда на расстояние между разноименными зарядами) этилового спирта [>авен 1.70 Д, а у ацетальде1 нда он составляет 2,70 Д. Эти значения свидетельствуют о том, что на атоме углерода карбонильной группы имеется значительно больший дефицит электронной плотности, чем на атоме углерода, связанном с группой ОН в спиртах, и поэтому альдегиды и кетоны должны легче реагировать с нуклеофильными реагентами. Первой стадией таких реакций является присоединение нуклеофильного реагента по связи С = 0  [c.162]

    Элементы реагируют друг с другом в количествах, пропорциональных их эквивалентам. Следовательно, в молекуле, образованной двумя элементами, произведение числа атомов на валентность одного элемента должно быть равно произведению числа атомов на валентность другого элемента например, А12 0" (здесь валентность алюминия 3, кислорода — 2, а число атомов соответственно — 2 и 3 произведение равно 6 для обоих элементов). Так как валентность водорода равна 1, то число атомов водорода в соединении может, очевидно, характеризовать валентность другого элемента. Так, в соединении HJ йод будет одновалентен, в НзЗ сера двухвалентна, в ЫНд азот трехвалентен и т. д. Отсюда можно дать такое практическое определение валентности  [c.14]

    Муравьиная кислота представляет собой смешивающуюся с водой бесцветную жидкость (т. пл. 8, т. кип. 101 С) с высоким значением диэлектрической проницаемости (е = 56 при 25°С) и очень резким запахом. Ее собственная электролитическая диссоциация характеризуется ионным произведением [НСООН+] [НСОО"] = 5 10- , а растворенная в ней НСЮ редет себя, как сильная кислота (/С = 5-10- ). В парах муравьиной кислоты имеет место димеризация по схеме 2НС00Н (НСООН)г + 14 ккал за счет образования водородных связей (между гидроксильными водородами и карбонильными кислородами). Присутствие в молекуле муравьиной кислоты (К = = 2- 10- ) при одном и том же атоме углерода связей С—Н и С = 0 ведет к тому, что она (подобно альдегидам) является сильным восстановителем. Соли ее (м у-равьинокислые, или формиаты), как правило, легкорастворимы. Интересно, что Сг(НСОО)г способен, по-видимому, существовать в двух формах — синей мономолекулярной и красной бимолекулярной. Разбавленный (1—1,5%) водный раствор НСООН под названием муравьиный спирт употребляется для втираний при лечении ревматизма. [c.562]

    По этому поводу В. Оствальд говорил Всеми признано, что если возникают сомнения в выборе единицы для атомных весов, то выбор может быть произведен только между нислородом и водородом для этой цели, как указывает история химии, никогда не предлагался какой-либо другой элемент. Дальтон выбрал за единицу водород на том основании, что его атомный вес наименьший в то же время Берцелиус, который гораздо тщательнее Дальтона определял относительные весовые величины атомов, перешел к кислороду. Этот переход был обусловлен не столько тем центральным положением, которое занимал этот элемент среди других, сколько чисто практическим требованием кислород образует соединения цочти со всеми другими элементами, и веса, в которых опи соединяются, можно в большипстве случаев определить непосредственным опытом... Мариньяк, а особенно Стас значительно подняли точность определений атомных весов... Оба исследователя вычисляли свои атомные веса па 0= 16 .  [c.296]

    Окисно-никелевый электрод для щелочных аккумуляторов изготовляют из гидрата закиси никеля Ы1(0Н)г, в смеси с графитом. В аккумуляторах Эдисона токопроводящей добавкой вместо графита служат тонкие лепестки никеля. Произведение растворимости Ы1(0Н)2 Ю г-мол1л, поэтому в растворах щелочи, обычно применяемых в аккумуляторах, в равновесии с N (01 )2 могут находиться ионы в количестве не более 10" г-ион1л. При такой ничтожной концентрации N4 + процесс не может идти за счет окисления ионов N 2 находящи.хся в растворе. Этому препятствует концентрационная поляризация. Заряд окисно-никелевого электрода протекает в твердой фазе. Электросопротивление Ы1(0Н)2 очень велико (10 ом см), но соединения никеля, более богатые кислородом, проводят ток лучше. Эршлер предполагает следующий механизм заряда [13]. Процесс начинается в месте плотного контакта зерна Н1(0Н)2 и токопроводящей добавки. При анодной поляризации ионы ОН" подходят к поверхности зерен Ы1(0Н)2 и отнимают от них протон, превращаясь в воду  [c.513]

    Основной закон химической кинетики не учитывает реагирующие вещества в твердом состоянии, ибо их концентрация постоянна и они реагируют лишь с поверхности. Так, например, в реакции горения угля С+02=С02 соударения между молекулами кислорода и твердого вещества могут происходить только на поверхности раздела фаз, а значит масса твердой фазы не влияет на скорость реакции. В этом случае и=йссСо,. Но ксс—постоянная величина, так как константа скорости и концентрация твердого вещества постоянны. Обозначим произведение постоянных величин через к. Тогда ю = к со,, т. е. скорость реакции пропорциональна только концентрации кислорода. Таким образом, состояние твердого вещества или степень развития его поверхности учитывается константой скорости реакции. [c.69]

    ОсБовной закон химической кинетики не учитывает реагирующие вещества, находящиеся в твердом состоянии, ибо их концентрации постоянны и они реагируют лишь на поверхности. Так, например, для реакции горения угля С+0з=С02 кинетическое уравнение реакции имеет вид , где к — константа скорости, Сс — концентрация твердого вещества 5 — площадь поверхности. Это величины постоянные. Обозначив произведение постоянных величин через к получим т. е. скорость реакции пропорциональна только концентрации кислорода. [c.92]

    Из закона действующих масс следует, что Ка= = ( А1гО,)/( А1 о)- В рассматриваемом случае продукт раскисления АЬОз выделяется в виде чистой твердой фазы, поэтому д, д =1. Таким образом, ири постоянной температуре произведение L = a ,a есть постоянная величина. Очевидно, что чем прочнее образующийся окисел, т. е. чем больше убыль свободной энергии при его образовании из элементов, тем сильнее смещено равновесие реакций раскисления в правую сторону и тем меньше численное значение L. Зная величину L, можно рассчитать концентрацию кислорода в стали при равновесии с заданным количеством раскислителя. При обычных в металлургии концентрациях О и А1 можно вместо активностей в выражении L использовать концентрации. В рассматриваемом случае при 1600°С произведение L= [А1]2[0]з 2-Отсюда следует, что, например, при концентрации алюминия, равной 0,01%, содержание кислорода должно быть близким к 0,0004%- Если при раскислении используют одновременно несколько элементов, то получающиеся окислы могут образовать друг с другом раствор или соединение, и их активности будут меньше единицы. [c.103]


Смотреть страницы где упоминается термин Кислород произведение: [c.173]    [c.510]    [c.151]    [c.192]    [c.293]    [c.101]    [c.112]    [c.31]    [c.113]    [c.104]   
Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.575 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.575 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.575 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.575 ]




ПОИСК





Смотрите так же термины и статьи:

Произведение



© 2025 chem21.info Реклама на сайте