Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Битумы фракций

    Исходный битум фракция 350—420 С Остаток > 50 °С Остаток >500 °С Асфальтены Кокс Зола [c.92]

    Принципиальная технологическая схема такой установки приведена на рис. П1-2. Как видно из схемы, переработка нефти здесь осуществляется в три ступени атмосферная перегонка нефти с получением топливных фракций и мазута, вакуумная перегонка мазута с получением узких масляных фракций и гудрона и вакуумная перегонка смеси мазута и гудрона с получением широкой масляной фракции и утяжеленного остатка, используемого для производства битума. Применение двух ступеней вакуумной перегон- [c.147]


    Гудрон — остаток вакуумной перегонки мазута — подвергается дальнейшей переработке с целью получения остаточных масляных фракций, кокса нли битума. [c.151]

    Основными задачами в проблеме углубления переработки нефти являются отбор от мазута широкой масляной фракции до 560— 580 °С и получение утяжеленного остатка, используемого в качестве сырья для производства битума и кокса. При углублении отбора широкой масляной фракции особое внимание должно быть обращено на обеспечение необходимого ее качества, так как практически все металлорганические соединения нефти концентриру--ются во фракции с температурой кипения выше 520—530°С. [c.191]

    В блоке вторичной перегонки бензина получаются фракции н. к. — 62, 62—85, 85—120 и 120—140 °С. В вакуумной колонне подвергается фракционированию поступающий из основной ректификационной колонны мазут, предварительно подогретый в печи до 420 °С. Нижний продукт вакуумной колонны — гудрон — нагревается в печи до 475 °С при этом происходит частичный его крекинг. Затем он поступает в камеру-испаритель, где поддерживается абсолютное давление 5 кгс/см и температура 435 °С. Жидкая фаза с низа испарителя после охлаждения в теплообменниках блока утилизации смешивается с компонентом котельного топлива каталитического крекинга и выводится с установки. Паровая фаза камеры испарителя направляется во фракционирующую колонну, которая работает при абсолютном давлении 4,5 кгс/см , температуре низа 370 и верха 157 °С. Часть гудрона выводится для производства дорожного битума. Некоторое количество верхнего продукта фракционирующей колонны после конденсации используется в качестве сырья для каталитического крекинга. Фракция дизельного топлива из основной ректификационной колонны поступает в отпарную колонну. Выходящее с низа отпарной колонны дизельное топливо после охлаждения до 90 °С в блоке утилизации тепла направляется на защелачивание совместно с дизельным топливом каталитического крекинга. [c.144]

    Противоточный непрерывный процесс извлечения протекает в основном в зоне расположения перегородок. С верха колонны 3 отводится раствор деасфальтизата в пропане (около 75% объемн. пропана, остальное углеводородные фракции), а с низа — битумный раствор (70% битума и 30% пропана). Потери пропана пополняются. [c.71]

    Основное назначение процесса — удаление асфальтенов из гудрона перед его дальнейшей углубленной переработкой, в частности гидрогенизационной. Нефтяной асфальтит может быть подвергнут газификации в схемах безостаточной переработки нефтяного сырья его используют в производстве нефтяных битумов и большого ассортимента различных нефтехимических продуктов, а также взамен природного асфальтита в производстве различных сплавов и в качестве теплогидроизоляционного материала. При температурах 140—150 С и давлении 2,2—2,5 МПа при обработке остаточного сырья легкой бензиновой фракцией (технической пентановой фракцией) в колонном экстракционном аппарате — экстракторе — образуются два слоя раствор деасфальтизата (около 70 % масс, бензиновой фракции и 30 % масс, деасфальтизата), который отводится с верха экстрактора, и раствор асфальтита (около 37 % масс, растворителя и 63 % масс, асфальтита), который откачивается из экстрактора снизу. Экстрактор снабжен тарелками из просечно-вытяжного листа. Кратность растворителя к сырью (по объему) составляет примерно 3,5 1 при выходе асфальтита в количестве 12—15 % (масс.) на гудрон [12]. [c.69]


    Битумные растворы [42—44]. Битумные растворы представляют собой раствор твердого битума в нефтяном дистилляте, что позволяет непосредственно наносить битум на дорожные поверхности без предварительного разогрева или с очень малым разогревом. В свою очередь битум является смесью твердого гудрона, продутого воздухом, с тяжелым дистиллятом или с вязким остатком асфальтовой сырой нефти. Битумы делятся на быстро, средне и медленно затвердевающие, в зависимости от скорости испарения растворителя. В быстро затвердевающем битуме может содержаться от 40 до 50% фракций, отгоняющихся до 360° С, в то время как в медленно затвердевающей смеси этих фракций содержится не более 25%. Имеются также различия в характере тяжелого остатка, смешиваемого с гудроном после окисления. [c.563]

    Метод заключается в предварительном осаждении петролейным эфиром асфальтенов из растворенного в бензоле битума, адсорбции смолистых веществ окисью алюминия и выделении парафинов из десорбированной фракции вымораживанием. [c.396]

    Основным сырьем для производства битумов в нашей стране являются остаточные продукты нефтепереработки гудроны, асфальты деасфальтизации, экстракты селективной очистки масляных фракций. Использование природных битумов крайне незначительно. [c.6]

    Основное назначение процесса вакуумной перегонки мазута — получение дистиллятных фракций для установок каталитического крекинга и производства масел. Остаток достаточно глубокой вакуумной перегонки — битум получается здесь не как целевой, но необходимый продукт. Ввиду значительной суммарной мощности установок вакуумной перегонки наибольшая часть дорожных битумов в ряде стран [29], в том числе в США [11], получается именно по этому процессу. В нашей стране использование вакуумной перегонки для получения битумов связывается с углублением переработки нефти при большем извлечении дистиллятов остаток перегонки будет по консистенции соответствовать некоторым сортам битумов. Если же переработка тяжелых дистиллятов в моторные топлива невозможна, то углубление вакуумной перегонки ради получения остаточных битумов нецелесообразно, так как выделен ные дистилляты приходится возвращать в остаточное котельное топливо. [c.33]

    На обеих ступенях перегонки в среднем отбирается одинаковое количество дистиллятов [35—37]. В целом отбор дистиллятных фракций при использовании двухступенчатой схемы увеличивается по сравнению с одноступенчатой примерно на 2% в пересчете на нефть [35]. Битум при этом получается более твердым. [c.37]

    Однако возможность производства высокопластичных битумов, вероятно, не связана с особенностями работы, присущими только трубчатому реактору (краткое время пребывания реагентов в зоне реакции при значительной рециркуляции жидкой фазы). Можно предположить, что получение высокопластичных битумов связано с тем, что процесс осуществляется при повышенном давлении, поскольку известно [11, 60], что при проведении процесса под давлением, примерно соответствующим давлению в трубчатых реакторах, высокопластичные битумы получаются и в других окислительных аппаратах. Так, при окислении в колонне гудрона с температурой размягчения 38 °С повышение давления с 0,2 до 0,4 МПа приводит к увеличению температуры размягчения битума с пенетрацией 42-0,1 мм с 60 до 65 °С [97]. Но это требует дополнительного изучения, причем следует учитывать, что обычно высокопластичные битумы получают из более легкого сырья, т. е. потеря некоторой части дистиллятных фракций предпочтительнее дополнительных затрат, связанных с окислением при повышенном давлении. [c.71]

    Горным бюро США разработана классификация нефтей, основанная на зависимости плотности от углеводородного состава. Для сравнения учитывают плотности двух фракций легкой и тяжелой, выкипающих соответственно при температурах 250— 275°С (под атмосферным давлением) и 275—300°С (под давлением 5,34 кПа). Если плотность узкой фракции, выкипающей при атмосферном давлении, не превышает 825 кг/м , считают, что нефть парафинового основания, при плотности не ниже 860 кг/м — нафтенового основания, а при промежуточных плотностях — промежуточного. Для фракции, выкипающей в вакууме, граничные цифры — 876 и 934 кг/м . Таким образом, установлено семь типов нефтей парафинового, парафино-проме-жуточного, промежуточно-парафинового, промежуточного, промежуточно-нафтенового, нафтено-промежуточного и нафтенового основания. Для выбора технологии битума важнее оценка фракции 275—300°С. [c.90]

    Таким образом, с целью увеличения выхода дистиллятных фракций нефти и углубления ее переработки целесообразно использовать больше асфальта деасфальтизации пропаном для производства битумов. Получать битум следует по методу переокисления— разбавления, причем, ступень окисления осуществлять в колонне с отделенной секцией сепарации [44]. [c.115]


    Опыт показал, что насосы тппа НГ и НК пригодны для транспортирования не только гудронов, но и дорожных и строительных битумов при наличии резервного парового поршневого насоса и обеспечении прокачивания линий горячими масляными фракциями. В то же время эти насосы потребляют примерно в пять раз меньше энергии (в пересчете на условное топливо) на перекачивание единицы объема жидкости по сравнению с обычно используемыми паровыми поршневыми насосами типа ПДГ [183]. [c.124]

    Расход энергии уменьшается в результате снижения энергетических затрат на вакуумную перегонку (применительно к сырью установки Мозырского НПЗ необходимый отбор дистиллятов уменьшается с 50 до 36% на мазут, причем большая часть фракций отгоняется на стадии окисления мазута), уменьшения объема вовлекаемого в переработку мазута при сохранении выработки битума, уменьшения объема перекачивания дистиллятов и орошений. Экономия энергии на вакуумном блоке превышает ее повышенный расход на блоке окисления (где используются двухсекционные колонны по типу установки Павлодарского НПЗ), вызванный необходимостью окисления более легкого сырья — мазута. Кроме того, по новой последовательности операций полнее утилизируется вторичное тепло, а топливо в окислительной колонне (окисление мазута с одновременным нагревом его перед вакуумной перегонкой) сжигается с более высоким к.п.д., чем в технологической печи. [c.126]

    Экстракторы применяют на установках, где компоненты сырья для битумного производства получаются как побочная продукция. Непосредственно на битумных установках с целью производства битумов их не применяют. Подробно экстракторы описаны в литературе, посвященной процессам деасфальтизации остатков перегонки и селективной очистки масляных фракций [204—205]. [c.138]

    Центробежные насосы с электроприводом проще в эксплуатации и менее энергоемки. Использование центробежных насосов для перекачивания гудрона практикуется широко. Накоплен также положительный опыт эксплуатации центробежных насосов для перекачивания дорожного битума (Хабаровский и Киришский НПЗ). При охлаждении центробежный насос теряет способность продавливать продукт по трубопроводу, что особенно опасно при перекачивании строительных битумов. Поэтому на битумной установке Мозырского завода наряду с использованием центробежных насосов типа НК в качестве основных предусмотрены паровые поршневые насосы в качестве резервных. Перед пуском центробежного насоса трубопроводы следует прокачивать горячей дизельной фракцией. Опыт эксплуатации центробежных насосов в открытой насосной в условиях суровой зимы 1978—1979 гг. показал их пригодность для перекачивания строительных битумов [54]. Опыт эксплуатации центробежных насосов с обогревом заслуживает распространения. [c.139]

    Достижение фракционного состава до температуры 315°С лимитируется количеством и фракционным составом разбавителя. Наличие большого количества фракций, выкипаюш,их до температур 200°С, приводит к повышенному содержанию в битуме фракций, выкипающих до 225 и 315°С. В то же время разбавитель должен почти полностью выкипать, чтобы обеспечить качество остатка после отбора до 360°С. В качестве разбавителей необходимо применять узкие нефтяные фракции, выкипающие в пределах температур 200—300°С в количестве 20—23% от количества битума. [c.64]

    Интересно наблюденное ими поведение маслянистого битума (фракции, растворимой в петролейном эфире) при нагревании. При 130° битум становился совершенно жидким, подвижным и маловязким при повышенип температуры начиналось его испарение почти без признаков разложения, выделявшиеся пары и газы образовывали пузыри, которые легко лопались. При нагревании до 400° все еще не происходило разложения битума, сохранявшего свою подвижность, и только при более высокой температуре из него образовывался совершенно невснученный кокс в виде тонкой корки, прилипшей к стенкам. [c.258]

    Для углубления отбора широкой масляной фракции до 520— 530 °С и получения утяжеленных остатков в настоящее ремя не-пользуют обычно простейшие схемы вакуумной перегонки с водяным паром при давлении в секции питания 67—200 гПа или глубоковакуумную перегонку без водяного пара при 13—33 гПа. Глубоковакуум ная перегонка мазута с водяным паром может быть использована также для получения дорожных битумов в виде остатков вакуумной перегонки [72]. При давлении перегонки от 6 до 13 гПа требуется сравнительно невысокий расход водяного пара — от 5 до 20% (масс.) на сырье. [c.191]

    Побочные продукты используются следующим образом фракция и. к. — 62 С — компонент автобензина либо сырье установки изомеризации, сухой газ — в качестве топлива на установке, фракция 140—180 С — компонент авиакеросина, остаток >460 °С — сырье для получения окисленных битумов, либо для установки коксования, либо для гюлучения остаточных масел. [c.20]

    Нефть, отобранная на площади Северный Риштан, имеет плотность 0,942 г/см и содержит, % парафино-нафтеновых У В 40,1, ароматических 38,2 (ПН/НА 1), смол бензольных 6,5 и спиртобензольных 10,2 асфальтенов, 4,4. Мальта площади Мумсай (образец 8) имеет плотность 0,973 г/см и содержит значительно меньше масел и больше асфальтенов (последних 32 %), в асфальте содержание асфальтенов повышается до 62,3 %, а масел уменьшается до 29,3 %, причем ароматических УВ становится значительно меньше, чем парафино-нафтеновых (ПН/НА 3,88). Степень циклизации парафино-нафтеновой фракции нефтей площади Северный Риштан высокая - 2,6, битумов — 3,1-3,9, с типом битума она не коррелируется. [c.155]

    Кроме отмеченных наблюдаются и другие различия парафино-нафтеновых фракций, в частности различия в структуре парафиновых цепей, отраженные в коэффициенте Ц, как в нефтях, так и в продуктах окисления - твердых битумах (Ц = 9-13, Шор-Су Ц = 4-5, Северный Риштан). Характерные различия отмечаются между этими двумя нефтями и продуктами их окисления по структуре нафтеновой части парафино-наф-теновой фракции по количеству и соотношению три- и тетрациклических нафтенов. Во фракции нефти Шор-Су мало три- и тетрациклических нафтенов, тетрациклических меньше, чем трициклических, а на Северном Риштане этих структур больше, преобладают тетрациклические нафтены. На площади Шор-Су на поверхности были встречены вязкие и твердые битумы. Они имеют совершенно идентичные ИК-спектры парафино-нафтеновой фракции с четко выраженными п.п. твердых парафинов. Генетическая общность этих образцов с нефтью проявляется назависимо от степени их гипергенной измененности. Наличие четко выраженной п. п. твердых парафинов в парафино-нафтеновой фракции отмечается для асфальтитов, озокеритов и мальты (рис. 27). [c.157]

    В процессах вакуумной перегонки и деасфальтизации получают остаточные и осажденные битумы. Главное назначение этих процессов — извлечение дистиллятных фракций для выработки моторных топлив и деасфальтизации — подготовка сырья для масляного проиэ водства. В то же время побочные продукты этих процессдв — гудрон перегонки и асфальт деасфальтизации — соответствуют требованиям на битум или их используют в качестве компонентов сырья при производстве окисленных битумов. [c.6]

    Разновидностью этого метода является анализ с использованием лгоминесцирующей способности компонентов битума. Цвет люминесценции фракции связан с коэффициентом преломления  [c.9]

    Асфальтены отделяют от битума, как описано выше, осаждением и фильтрованием, а мальтены разделяют на силикагеле элюированием изооктаном, бензолом и этанолом Вымываемые из хроматографической колонки соединения, растворенные в соответствующем растворителе, подаются на транспортирующую цепочку. Во время движения цепочки растворитель испаряется, а компоненты битума поступают в печь, где сгорают. Образовавшийся диоксид углерода регистрируется катарометром. Величина пика диоксида углерода позволяет судить о количестве соответствующего компонента битума. Принимая площадь всех пиков Пропорциональной общему содержанию мальтенов и учитывая количество предварительно выделенных асфальтенов, рассчитывают групповой химический состав битума. Как видно, количественная оценка группового химического состава по этому методу не связана с отбором больших объемов и высушиванием многочисленных фракций, что необходимо при традиционном анализе битума по коэффициенту преломления (или люминесценции). В результате этого продолжительность анализа маль тенов резко сокращается. Однако необходимость длительной (до-двух суток) операции по выделению асфальтенов из навее испытуемого образца по-прежнему остается. [c.9]

    Различное понимание структуры битумов, вероятно, связано с возможностью объяснения многих важных свойств битумов с позиций обеих теорий. Не исключено также, что столь сложная система, каковой являются остаточные фракции нефти, включает в себя элементы структуры как коллоида, так и раствора. Можно отметить, что известно существование обратимыХ-1иер модинамически равновесных систем, которые в одних. условиях [c.15]

    К. Олиензис предложил метод, именуемый испытанием на пятно. Битум растворяется во фракции 150— 200 °С с анилиновой точкой 59— 63 °С. Капля раствора переносится на лист фильтровальной бумаги. После испарения растворителя рассматривают образовавшееся пятно. Однородность пятна свидетельствует о гомогенном строении анализируемого битума. В случае образования в центре пятна более темного круга по сравнению с периферией бн- [c.21]

    Большое значение имеет температура в нижней части колонны. Время пребывания остаточных фракций здесь значительно больше, чем в трубах нагревательной печи, и опасность крекинга выше. Известно, что реакции крекинга отрицательно сказываются как на эффективности самой перегонки, увеличивая количество неконденсируемых компонентов и тем самым нагрузку на вакуумсоздающую аппаратуру, так и на качество получаемой продукции. Перегретый битум имеет повышенную пенетрацию и показывает неудовлетворительные результаты при испытании по Олиензису. Если высокий уровень жидкой фазы в низу колонны, обусловливающий большое время пребывания остатка, необходим для поддержания нужного давления в приемной линии насоса, то температура остатка должна быть ниже температуры сырья. При использовании водяного пара падение температуры происходит в результате затрат тепла на испарение дистиллятных фракций йз жидкофазного остатка. В противном случае температуру снижают, возвращая в низ колонны часть охлажденного остатка перегонки. В зави-СИ.МОСТИ от условий перегонки температура нижней части колонны поддерживается в пределах 310—390°С [И, 32]. [c.36]

    Установление взаимных связей между содержанием отдельных комяонен-тов тяжелых фракций нефтей, являющихся потенциальным сырьем для производства битумов, представляет несомненный интерес для решения практических вопросов. [c.91]

    И нредставляющи.х интерес для производства битумов. В связи с этим предложено представлять разгонку нефти по ИТК на вероятностном графике, отражающем нормальное (гауссовское) распределение в интегральной форме [131, 132] (по аналогии с таким же представлением отдельны.х фракций нефти [133, 134]). На вероятностном графике истинные температуры кипения ложатся на одну прямую (рис. 59).. втор работы [131] предлагает этому явлению следующее теоретическое объяснение. [c.92]

    С уменьшением содержания серы в нефти, как видно из рис. 62, повышаются температуры размягчения, снижаются температуры хрупкости и увеличиваются показатели пенетрации при 0°С битумов в то же время уменьшается дуктильность. Уменьшение содержания легких фракций в гудроне приводит к противоположным результатам. Поскольку в соответствии с требованиями стандартов необходимо обеспечить определенные значения всех этих показателей, то предпочтительнее использовать более тяжелый гудрон при уменьшении сернистости нефти. Однако в случае малосернистых, но высокопарафиннстых нефтей сказывается влияние парафина. Даже при использовании гудрона выше 600°С, т. е. наиболее тяжелого в практике отечественной нефтепереработки, дуктильность получающихся. битумов еще не соответствует требованиям стандарта. Поэтому такие нефти следует признать непригодными для производства окисленных битумов. [c.97]

    До недавнего времени большой объем асфальта деасфальтизации гудрона пропаном вовлекался в сырье битумного производства [145]. С повышением требований к температуре размягчения битумов в соответствии с новыми стандартами доля асфальта, используемого в качестве битумного сырья, была снижена для обеспечения температуры размягчения битума с заданной пенетрацней. Большое количество асфальта передано в котельное топливо, что, в свою очередь, предопределяет вовлечение дополнительны.х количеств легких фракций для обеспечения выпуска топлива прежней марки. Так, при выпуске мазута марки 100 включение в его состав асфальта требует одноврем.енно добавления вакуумного газойля в соотношении примерно 1,0 0,5. При этом, конечно, снижается глубина переработки нефти. Была изучена возможность увеличения доли асфальта в битуме при сохранении качества последнего. Исследования проведены на образцах гудрона (вязкость условная при 80°С рав- [c.113]

    Нужно отметить, что на практике на установку периодитески поступают поврежденные бункера и бункера с водой или снегом. И то и другое приводит к заливу битумам железнодорожных путей, которые приходится чистить вручную. Такая чистка представляет собой серьезную проблему, поскольку для ее проведения не предусмотрены специальные механизмы и штат работников. Для предотвращения вспенивания и перелива битумов (из-за присутствия воды или снега) почти повсеместно используют (14, 213] антипенную присадку (ПМС-200А в растворе керосиновой или дизельной фракции), раствор которой выливают в бункер (примерно 5 г на ковш). [c.146]

    Широко применяют за рубежом обогрев жидким теплоносителем [195, 196, 228], в качестве которого используют масляные фракции или вакуумный газойль. Система обогрева теплоносителем включает печь для нагрева теплоносителя, расширительную камеру для выравнивания колебаний уровня и давления теплоносителя, обогревательные змеевики в битумных резервуарах и линии для обогрева трубопроводов, аналогичяые паро-спутникам. На битумной установке производительностью 400 тыс. т 1в год и Парком хранения на 25 тыс. для теплоносителя устанавливают емкость в местимостью 40 м масло в систему подается автоматически, и в печи оно нагревается до 290 °С. О богрев теплоносителем в отличие от других методов исключает выбросы и перегрев битума. [c.164]

    ВНИИПКнефтехим. Проектная производительность примерно 1 т в час. На установке иапользуется теплоноситель — фракция 350—500°С. Система теплоносителя включает в себя буферную емкость, нагревательную печь, центробежный насос НК-бО/35, воздушный холодильник (для охлаждения теплоносителя в случае его перегрева, поверхность нагрева 630 м ), трубчатый теплообменник (для нагрева битума, поверхность нагрева 250 м ) предусматривается обогрев всех битумных трубопроводов и рабочей части парового поршневого насоса ПДГ-40/30, предназначенного для первкачи вания и рециркуляции битума. Для стабилизации качества теплоносителя в газовую часть емкости лодают инертный газ.  [c.165]


Смотреть страницы где упоминается термин Битумы фракций: [c.344]    [c.195]    [c.94]    [c.261]    [c.183]    [c.155]    [c.157]    [c.93]    [c.27]    [c.30]    [c.39]    [c.110]    [c.112]   
Общая химическая технология топлива Издание 2 (1947) -- [ c.24 ]




ПОИСК







© 2025 chem21.info Реклама на сайте