Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Почвы кислорода

    Известно, что имеются природные богатства, которые не возобновляются — это, в первую очередь, все виды минеральных ресурсов, объём потребления которых достигает астрономических цифр. Растительность, животный мир, почва, кислород атмосферы, вода обладают способностью к естественному самообновлению. Однако и их потребление человеком зачастую превышает компенсационные возможности естественного само-воспроизводства. [c.3]


    С уплотнением почвы возникают условия для новой формы ее химического загрязнения Обработка земли тяжелыми машинами, уличный транспорт и строительство приводят к уплотнению боль ших участков окультуренных земель, что приводит к забиванию пор земли В результате уменьшается влагоемкость и снабжение почвы кислородом В уплотненной почве происходят процессы [c.136]

    Песчаные почвы характеризуются сравнительно небольшой пористостью , однако эти поры велики и легко пропускают воду и газы. В таких почвах кислород легко достигает поверхности находящихся на глубине металлических конструкций. [c.84]

    Степень насыщения почвы-кислородом [c.85]

    Коррозионные процессы в почве, как правило, протекают при участии кислорода. Приток кислорода к находящейся в земле металлической конструкции может осуществляться путем диффузии и конвекции из воздуха, из дождевых, поверхностных и грунтовых вод. Степень насыщения почвы кислородом зависит от толщины почвенного слоя, ее структуры и увлажненности. Скорость притока кислорода к металлу в песчаных, разрыхленных и слабо увлажненных почвах значительно больше, чем в почвах глинистых, илистых, сильно увлажненных. Поэтому песчаные почвы ( легкие почвы) обнаруживают большую агрессивность по сравнению с глинистыми ( тяжелыми почвами). Однако укладка трубопровода последовательно в глинистых и песчаных почвах приводит к образованию коррозионных пар, неравномерной аэрации, причем участки, слабо насыщенные кислородом (глинистые почвы) проявляют анодный характер по отношению к участкам, сильно насыщенным кислородом (песчаные почвы) (рис. П1-10). [c.85]

    Кислород воздуха, растворенный в воде, используется в процессе дыхания рыб и водяных растений. Проникая в почву, кислород обеспечивает течение бактериальных процессов разложения мертвого органического вещества с образованием минеральных соединений, непосредственно доступных для питания растений (процесс минерализации). Воздух (совместно с водой) играет большую- роль в процессах разрушения горных пород (выветривание), а следовательно, и в процессах почвообразования. [c.63]

    Степень насыщения почвы кислородом [c.85]

    Еще одной отрицательной стороной воздействия на биосферу является сжигание топлива, приводящее не только к загрязнению воздуха, воды, почвы, но и к таким изменениям атмосферы, которые в дальнейшем могут привести и к изменениям климата и ко многим другим, иногда трудно прогнозируемым последствиям. В настоящее время ежегодно сжигается около 2,5 млрд. т нефти и более 20 млрд. т каменного угля. Это приводит к расходу не менее 15 млрд. т свободного кислорода, взамен которого в атмосферу поступает около 25 млрд. т углекислого газа. В результате подобной деятельности человека за последние 50 лет было использовано кислорода столько же, сколько за всю предыдущую историк человечества [1.11]- [c.3]


    В почве постоянно происходит реакция аммиака МНз с газообразным кислородом О2. Эта реакция широко используется также в химической промышленности для получения полупроводников при производстве лекарств, взрывчатых веществ, химических волокон и др. [c.139]

    Наиболее характерным катодным процессом в подземных условиях является кислородная деполяризация с преобладанием торможения транспорта кислорода к металлу. Транспорт кислорода в почве или грунте к поверхности корродирующего металла осуще-стр)ляется направленным течением газообразной нли жидкой фазы, конвекционным перемешиванием этих фаз или диффузией кислорода в газообразной или жидкой фазе (рис. 275). [c.384]

    Микроорганизмы, находящиеся в большом количестве в почвах и грунтах, могут вызывать значительное местное ускорение коррозии металлов, в частности стали (рис. 278). Наибольшую опасность представляют анаэробные сульфат-редуцирующие бактерии, которые развиваются в илистых, глинистых и болотных грунтах, где возникают анаэробные условия. Зти бактерии в процессе жизнедеятельности восстанавливают содержащиеся в грунте сульфаты, потребляя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода  [c.388]

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]

    Существуют многочисленные виды бактерий. Некоторые из них в присутствии свободного и растворенного кислорода быстро окисляют органические вещества почв и илов. Продуктами окисления являются углекислый газ и вода. В то же время образуются и другие продукты окисления, главным образом гуминовые кислоты. [c.69]

    Как показано в разделе 6.1.3, скорость коррозии железа или стали в природных водах лимитируется диффузией кислорода к поверхности металла. Следовательно, бессемеровская или мартеновская сталь, ковкое железо или чугун мало или совсем не будут различаться по своим коррозионным свойствам в природных водах, в том числе и в морской [11]. Это утверждение приложимо и к коррозии в различных почвах, так как факторы, определяющие скорость почвенной коррозии и коррозии погруженного в воду металла, одинаковы. Таким образом, для этих сред подойдут любые, самые дешевые сталь или железо, лишь бы они обладали требуемой механической прочностью при данной толщине сечения. [c.123]

    Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв- [c.127]


    Предотвращение контакта с аммиаком (или кислородом и другими деполяризаторами в присутствии аммиака). Отсутствие влияния ЫНз трудно гарантировать, так как уже следы его вызывают растрескивание. Пластмассы, содержащие следы аминов или разлагающиеся с их образованием, оказывают постоянное разрушающее воздействие на неотожженную латунь. Содержащие удобрения стоки с сельскохозяйственных угодий и воздух над удобренными почвами также вызывают растрескивание латуни. В то же время трубки латунных конденсаторов не растрескиваются при контакте с конденсатом котловой воды, содержащим ЫНз, так как концентрация кислорода в нем очень мала. [c.339]

    Скорость деструкции нефти можно увеличить при создании в почве нейтральной реакции, внесении воды, N, Р (соотношение N P должно быть 100 10 10), СаОг (как дополнительного источника кислорода) [52, 208, 211, 221], [c.155]

    Различают анаэробные бактерии, жизнедеятельность которых может протекать при отсутствии кислорода, и аэробные — только в присутствии кислорода. В природе наиболее широко распространены сульфатовосстанавливающие анаэробные бактерии, обычно обитающие в воде, грязи, сточных водах, нефтяных скважинах, донных осадках, почве, цементе. Наиболее благоприятной средой для развития этих бактерий являются почвы с рН = 5-ч-9 (оптимально 6—7,5) при 25—30° С. В результате действия сульфатовосстанавливающих бактерий образуется сероводород, который, соединяясь с железом, дает сернистое железо РеВ. [c.49]

    Разрушение смазочных материалов в почве и воде может проходить путем химического окисления (под действием окислителей и кислорода воздуха) и биологического разложения. Процессы окисления и биоразложения входят в сложнейший комплекс процессов самоочищения и самовосстановления экосистем, протекающих весьма неоднозначно и никогда не приводящих к возникновению экосистемы, идентичной бывшей до зафязнения [89]. Возможность самоочищения почв от токсичных продуктов различна в зависимости от характера конкретного ландшафта, физико-химических свойств почвы и загрязнений. [c.80]

    Для контроля температуры, влажности и наличия газов устанавливается соответствующая аппаратура. При обеднении смеси кислородом почву перемешивают с помощью специального оборудования — аэратора, способного перемешивать 5000 м почвы в день. В течение первых нескольких дней процесса восстановления почву перемешивают 2—3 раза, затем частота перемешивания снижается до 1 раза в неделю. [c.388]

    Аналогичные результаты были получены при исследовании влияния аэрируемости почвы на глубину питтинга и характер коррозии. Большая глубина коррозионных поражений в плохо аэрируемой почве (глина) связывается с функционированием пар дифференциальной аэрации, возникновение которых возможно вследствие образования воздушных мешков, пузырей и других пустот при заложении образцов. Возможно, что в хорошо аэрируемых почвах кислород является не только деполяризатором, но и выполняет присущую ему функцию лассиватора, укрепляя защитные пленки. [c.225]

    Предварительная обработка сточных вод. Сточные воды содержат значительное количество взвешенных и жиро-подобных зешеств, которые, попадая на поверхность почвы, закрывают ее поры, что приводит к затруднению или прекращению проникновения в почву кислорода и нарушению процесса минерализации органического вещества, в связи с чем орошение неотстоен-ными водами нежелательно с агрономической точки зрения. Кроме того, значительное содержание в неотстоенных фекальных стоках яиц гельминтов и болезнетворных начал делает их санитар но опасным И. Применение отстоенных вод дает возможность повышения нагрузок на поля, что особенно важно при коммунальных полях и полях фильтрации. Поэтому как правило сточные воды при почвенных методах очистки должны подвергаться предварительному отстаиванию в продолжение не менее 1 часа. [c.189]

    На ряде месторождений добываемые вместе с нефтью пластовые воды высоусоагресснвны н вызывают интенсивную коррозию нефтепромыслового оборудования из-за наличия остаточного газа, механических примесей, растворенных солей, кислорода, химических реагентов, продуктов коррозии, а такл<е появления в них на поздней стадии разработки месторождения сероводорода в результате жизнедеятельности сульфатвосстанавливающих бактерий. Коррозия приводит к нарушению герметичности ко-лон [, а попадающие в почву сточные воды вызывают засоление почвы и грунтовых источников питьевой воды. В связи с этим пластовые воды обрабатывают ингибиторами коррозии, на внут-реншою поверхность трубопроводов и рабочих органов насосов, предназначенных для перекачки сточных вод, наносят защитные полимерные покрытия, проводят мероприятия по предотвращению попадания в них кислорода, кислотных и щелочных стоков, отделению газа и песка. [c.207]

    Некоторая же часть азота всегда выделяется при гниении г свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, камениогс угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих д с и и т р и ф и ц и р у ю щ н X бактерий приводит к тому, что часть азота из доступной для зеленых расте1[ий формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растении, возврантается обратно в почву часть его постепенно выделяется в свободном виде. [c.416]

    Если разложение растительного материала имеет место при недостаточном доступе воздуха, как происходит, например, разложение корней отмерших растений в почве, оно сводится, согласно Г. Потонье, к процессу перегнивания, который вследствие недостаточного количества кислорода является неполным тлением. В результате этого процесса в остатке образуются продукты, богатые углеродом, состоящие главным образом из соединений углерода, водорода и кислорода, по типу своему напоминающие углеводы. Это так называемые гумусовые вещества. Таких веществ скопляется сравнительно немного, и они составляют одну из главных частей почвы. [c.24]

    Скорость перевода атмосферного азота в состояние, в котором он может быть усвоен или реализован, в природных процессах весьма мала. В среднем половина необходимого для жизни азота возвращается через атмосферу за 10 лет, тогда как для кислорода этот период составляет 3000 лет, а для углерода всего 100 лет. В то же время, организация современного культурного земледелия связана с непрерывным уносом усвояемого азота с посевных площадей, достигающим 88 млн. тонн в год, а это 90% азота, необходимого для питания растений. Поэтому первоочередная задача — непрерывное пополнение запасов азота в почве в усвояемой растениями форме, то есть в виде его соединений. До конца XIX столетия источником подобного связанногр азота служили естественные удобрения и лишь в незначительной степени природные соли — нитраты натрия и калия, запасы которых в природе весьма ограничены. Увеличение масштабов культурного земледелия и потребностей промышленности в разнообразных соединениях азота потребовали разработки промышленных способов получения этих соединений, то есть способов связывания атмосферного азота. [c.184]

    Основную массу кислорода, углерода и водорода растение получает из воздуха и воды, остальные элементы извлекает из почвы. При современных масштабах культурного земледелия естественный кругооборот питательных элементов в природе нарушается, так как часть их выносится с урожаем и не возвращается в почву (табл. 16.1), а также вымывается из почвы дождевыми водами или переходит в недеятельную форму (иммобили- [c.240]

    Азот — основной компонент атмосферы Земли (78,09% по объему, или 75,6% по массе, всего около 4-10 кг). В космосе он занимает четвертое место вслед за водородом, гелием и кислородом. Свободный азот вместе с аммиаком N [3 и хлоридом аммония ЫН. С присутствует в вулканических газах. Органические соединения азота содержатся в нефти и угле. В живых организмах его до 0,3% в виде соединений. Присутствие связанчого азота в почве — обязательное условие земледелия. Растения, получая азот из почвы в виде минеральных солей, используют его для синтеза белков, витаминов и другие жизненно важных веществ. [c.119]

    В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области [c.107]

    Кроме того, аэрация грунтов может влиять на коррозию не только за счет прямого участия кислорода в образовании защитных пленок, но и косвенно — в результате снижения концентрации реагирующих с кислородом органических комплексообразовате-лей или деполяризаторов, присутствующих обычно в некоторых почвах и усиливающих работу локальных элементов. В этом отношении положительное влияние аэрации распространяется и на грунты, содержащие сульфатвосстанавливающие бактерии, которые в присутствии растворенного кислорода теряют активность. [c.183]

    Единственный недостаток этого способа — малая глубина исследований, не более 2 — 3 километров. Поэтому для более глубинных исследований применяют преобразователь взрывной энергии. Источником волн здесь по существу остается тот же взрьш. Но происходит он уже не в почве, как раньше, а в специальной взрывной камере. Взрывной импульс передается на грунт через стальную плиту, а вместо взрывчатки часто используют смесь пропана с кислородом. Все это, конечно, позволяет намного ускорить процесс зондирования недр. [c.40]

    Силикаты. Земная кора почти полностью (90 мае. доли, %) состоит из кремнезема, силикатов и алюмосиликатов. Эти минералы составляют основу всех горных пород и продуктов их выветривания — почвь , песка, глины. Силикатами и алюмосиликатами являются все неорганические строительные материалы как естественного (гранит), так и искусственного происхождения (кирпич, цемент). Силикатами является стекло. Столь широкое многообразие соединений кремния с кислородом объясняется тем, что кислород и кремний — наиболее распространенные элементы литосферы (см. табл. 2) и кремнекислородные структурные единицы способны сочетаться друг с другом множеством способов, порождая разнообразие соединений. [c.214]

    Влажность грунта можно характеризовать как степень заполнения его капилляров и пор водой. Поэтому в зависимости от влажности грунта преобладающее значение может иметь перенос кислорода либо в жидкой фазе (в сильновлажных грунтах), либо в газовой фазе внутрипорозного воздуха (в сухих и маловлажных грунтах). В л<идкой фазе диффузия кислорода значительно меньше, чем в газовой, поэтому с увеличением влажности грунтов диффузия кислорода через слой грунта будет уменьшаться. И. Д. Томашов и 10. И. Михайловский показали экспериментально, что увеличение влажности песка от О до 20% уменьшает скорость диффузии в 1000 раз. Е ще более чувствительны к снижению диффузии кислорода при увеличении влажности глинистые грунты. Кроме механического заполнения пор и капилляров жидкостью (как в песках) происходит набухание коллоидных частиц глинистых грунтов, что уменьшает проходное сечение открытых капилляров. В сухом состоянии пористость глины больше, чем песка. Торможение катодного процесса, таким образом, увеличивается с увеличением влажности почвы. При этом интенсивность этого торможения меняется с изменением влажности грунта (рис. 7, б). [c.42]

    Окисление нефти в недрах, на больших глубинах, атмосферным воздухом маловероятно, потому что нефть, всегда залегает в условиях восстановительной среды. Если бы воздух мог проходить толщу прикрывающих нефть пород, кислород его израсходовался бы еш,е до попадания в самую нефть на различные окислительные реакции минерального характера и на окисление рассеянного органического вещества, всегда содержащегося в осадочных породах. В связи с этим интересно, что выветривание каменного угля, сказывающееся например, на потере теплотворной способности, не распространяется глубже 50 м, даже в случае выхода пласта угля на поверхность. Известно также, что в поверхностных слоях почвы наблюдается полное отсутствие кислорода на совершенно незначительных глубинах. Осадочные породы являются своего рода фильтром, не пропускающим кислород воздуха в более глубокие слои. Все эти хорошо известные обстоятельства заставили искать иные пути заноса кислорода в недра, хранящие нефть. Много внимания уделялось в этом плане бактериальной деятельности. Преднолагается, что некоторые виды анаэробных бактерий, живущие в недрах, заимствуют необходимый им кислород из [c.155]

    Большие потери из-за утечек нябпюдаются в процессе слино-наливных операций, при заправке техники, смене масел, а также при сборе отработанных продуктов. В этом случае почти все смазочные масла представляют опасность для почвы и сточных вод. Масла, пролитые на поверхность воды, образуют разводы, затем пленки, эмульгируемые, окисляемые кислородом воздуха, час- [c.73]

    Поэтому, во-первых, следует различать биоразложение небольших количеств экологобезопасных продуктов при проливах и утечках и утилизацию значительных количеств при их смене во-вторых, биоразложение в естественных условиях не всегда достаточно эффективно может устранять подобные загрязнения. При незначительных проливах в почву проникают отработанные масла, содержащие присадки, продукты старения и износа металлов. В зависимости от состояния и характера почвы в одном ее кубометре может находиться от 5 до 40 л масла. Биологические окислительные реакции идут в присутствии значительных количеств кислорода, но замедляются продуктами износа металлов. Потребность в кислороде достаточно велика для полного окисления одного литра масла его расходуется примерно в 40—50 раз больше, чем для бытовых сточных вод. При сильном загрязнении воды или почвы образуются так называемые масляные линзы (тела) с относительно небольшой поверхностью. Скорость биоразложения в этом случае определяется постепенным замедлением доступа кислорода, поэтому в большинстве случаев она почти та же, что для углеводородов нефтяного масла. [c.327]


Смотреть страницы где упоминается термин Почвы кислорода: [c.157]    [c.251]    [c.321]    [c.46]    [c.404]    [c.29]    [c.103]    [c.126]    [c.75]    [c.79]    [c.153]    [c.42]    [c.82]   
Полярографический анализ (1959) -- [ c.390 ]




ПОИСК







© 2025 chem21.info Реклама на сайте