Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сварка из легированных сталей

    Для сварки легированных сталей следует применять электроды, имеющие несколько большую степень легирования, чем у свариваемого металла детали, так как часть легирующих добавок при сварке окисляется. Для повышения устойчивости горения [c.77]

    Если в конструкции корпуса используют и аустенитные, н углеродистые стали, то необходимо учитывать различие их физических свойств температурный коэффициент линейного расширения для аустенитной стали приблизительно в 1,5 раза больше, чем для углеродистой, а теплопроводность — в 3—4 раза меньше. Вследствие этого при сварке разнородных сталей происходит локальное нагревание с последующим возникновением значительных остаточных напряжений, которые снижают коррозионную стойкость аустенитных сталей. При сварке разнородных сталей происходит диффузия легирующих элементов в углеродистую сталь, что снижает коррозионную стойкость аустенитной стали. По этим причинам следует в одних случаях вводить упругие элементы, а в других — отдалять стыки аустенитной и углеродистой стали от мест воздействия агрессивных сред введением промежуточных элементов. Некоторые варианты подобных конструкций показаны на рис. 4.16. [c.116]


    В качестве присадочного материала при газовой сварке трубопроводных сталей применяют проволоку с содержанием углерода не более 0,12"о, а для легирования шва — проволоку с повышенным содержанием хрома (до 20"и), марганца (до 2"о), молибдена (до З ь), никеля (до 10 ( ) и других легирующих элементов в соответствии с маркой свариваемой стали. В некоторых случаях для присадки при газовой сварке используют так называемую лапшу , т. е. прутки или стержни, изготовленные из основного металла свариваемого изделия. [c.41]

    Сварка кислотостойких сталей имеет некоторые особенности. Длительный перегрев приводит к выгоранию легирующих элементов и понижению коррозионной стойкости сварного шва, поэтому обеспечение равной толщины свариваемых изделий имеет особое значение. [c.17]

    Для сварки легированных сталей следует применять электроды, имеющие несколько большую степень легирования, чем у свариваемого металла детали, так как часть легирующих добавок при сварке окисляется. Для повышения устойчивости горения дуги электроды покрывают меловой обмазкой. Меловая обмазка повышает устойчивость дуги, но не защищает металл от воздействия воздуха. Рассмотренные типы электродных покрытий содержат органические вещества, которые, сгорая, образуют СО2 и СО, вытесняющие воздух из области дуги, и, таким образом, защищают металл от окисления. Электродные обмазки включают и шлакообразующие материалы (мрамор, полевой шпат, каолин) получаемый жидкий шлак в процессе сварки также изолирует поверхность металла от воздуха. Кроме того, в электродные покрытия входят раскисляющие вещества (графит, алюминий, ферросплавы), которые соединяясь с окислами, образуют легкоплавкие шлаки. [c.98]

    С целью компенсации снижения содержания легирующих элементов в металле шва для сварки применяют присадочные материалы с повышенным содержанием хрома и никеля. Например, при сварке двухслойной стали с хромистой плакировкой (содержанием хрома [c.229]

    Сварка легированной стали с углеродистой в принципе возможна, так как температуры плавления тех и других сталей отличаются незначительно. Однако различия в химическом составе и физических свойствах свариваемых сталей вызывают изменения в структуре и составе металла сварного шва. Сварной шов имеет достаточно высокую механическую прочность, но теряет коррозионную стойкость вследствие уменьшения в нем концентрации легирующих элементов. [c.272]


    В сварных швах трубных решеток из низколегированной стали почти не бывает пор, по наличие легирующих элементов увеличивает твердость и возможность появления трещин. Для предотвращения этого необходимы предварительный подогрев до 100—200° С, а после сварки — термообработка при 700° С для снятия напряжений. [c.175]

    При сварке любым из перечисленных методов наплавляемая сталь сварного шва, как правило, отличается от стали трубных заготовок. Требуемая технологическая прочность сварных швов достигается использованием сварочной проволоки и покрытий, содержащих определенные композиции легирующих элементов, [c.33]

    Основным легирующим элементом нержавеющих сталей является хром, который облагораживает электродный потенциал стали и повышает ее коррозионную стойкость. Повышение коррозионной стойкости при увеличении содержания хрома в стали происходит скачкообразно. Первый порог коррозионной устойчивости достигается при концентрации хрома, равной 12,8%, что соответствует 1/8 атомной доли хрома в соста,ве стали. Для обеспечения коррозионной стойкости стали это количество хрома должно находиться в твердом растворе железа и не образовывать карбидов. При увеличении его содержания до 18% или до 25—28% достигается второй порог и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако увеличение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Поэтому стали с высоким содержанием хрома после сварки требуют термической обработки. [c.40]

    Перспективно применение электродов из проволоки с легирующими, газо- и шлакообразующими компонентами и порошковой сталью (введенными внутрь в процессе протяжки), а также из голой проволоки, в состав которой введены редкоземельные элементы (церий и др.). Эти виды присадочных материалов особенно эффективны при механизированной сварке [112, ИЗ]. [c.307]

    В морской воде коррозионная стойкость нержавеющих сталей определяется не только составом легирующих добавок, но и их структурой [8]. В частности, мартенситные стали, содержащие 12—18 % Сг, в морской воде подвержены заметной коррозии, сопровождающейся коррозионным растрескиванием за счет разрушения карбидной фазы. Удовлетворительная коррозионная стойкость ферритных сталей нивелируется затруднениями, связанными с их сваркой, и усиленной коррозией их сварных соединений. Наилучшие антикоррозионные свойства отличают аустенитные стали, хотя их механические свойства хуже, чем у мартен-ситных и ферритных сталей. Оптимальное сочетание коррозионной стойкости с механиче- [c.27]

    Сварочная проволока поставляется по ГОСТ 2246-60. Первые две буквы в марке проволоки обозначают, что проволока предназначена для сварки. Далее идут цифры, показывающие содержание углерода в сотых долях процента, буквы, указывающие, какие легирующие элементы входят в состав проволоки, и цифры, обозначающие содержание легирующих элементов в целых процентах. Маркировка проволоки аналогична маркировке легированных сталей. [c.137]

    Биметаллы. Двухслойный лист, состоящий из обычной углеродистой стали, плакированный легированной или нержавеющей сталью слоем 2...8 мм. Как показал опыт эксплуатации аппаратов, изготовленных из биметалла, слабым звеном в них являются сварные швы - при сварке возможна переплавка основного металла легирующим электродом, что приводит к ослаблению сварного шва. Так, при освоении Оренбургского месторождения сепаратор, работавший при давлении выше 75 кгс/см , разрушился. Началом трещины послужило внедрение легированного металла в основной. [c.72]

    Вместе с тем при сварке любых легированных сталей следует руководствоваться правилом, по которому присадочная проволока должна содержать основные легирующие элементы в количестве, равном или несколько большем их содержания в металле свариваемых труб. Последнее особенно относится к элементам, которые подвергаются значительному угару в процессе сварки. [c.284]

    Нержавеющие стали аустенитного класса пригодны только при сравнительно высоком содержании в них других легирующих компонентов, — в первую очередь молибдена. Исследование ряда нержавеющих сталей установило, что наиболее стойкой является икельхромомол ибденовая сталь с медью (18% Ni 8% Сг 4% Мо 4% Си), потеря веса которой при самых тяжелых условиях работы 0,1 г1м -час. Эта сталь хорошо сваривается, но требует термической обработки шва. Для тех деталей, которые не могут термически обрабатываться после сварки, в сталь дополнительно вводят около 0,8% Ti. [c.368]

    Здесь мы подходим к вопросу — можно ли сваривать между собой детали из специальных и углеродистых сталей. Сварка высоколегированных сталей с обычными возможна, потому что температуры плавления хромоникелевых и углеродистых сталей немного отличаются между собой. Различие в химическом составе и физических свойствах также не является препятствием. Во время сварки металлы расплавляются, и происходит их перемешивание и диффузия легирующих добавок, проникающих в углеродистую сталь и вызывающих постепенное изменение состава и свойств металла в зоне шва. Превосходные механические характеристики шва доказаны многочисленными испытаниялта. Что же касается коррозионных характеристик таких швов, то высокими их и ожидать нельзя, так как концентрация легирующих элементов в шве в результате диффузии будет ниже, чем в основном листе, не говоря уже о нарушении аустенитной структуры. [c.111]


    При сварке биметалла кромку обрабатывают с двух сторон. Двухслойную сталь с плакирующим слоем из стали 12Х18Н10Т или 10Х17Н13Л 2Т применяют при температуре до 450° С. Сварка углеродистой стали с кислотостойкой возможна сварной шов получается достаточно прочным, однако коррозионная стойкость кислотостойкой стали вблизи сварного шва снижается вследствие диффузии легирующих элементов и изменения структуры металла. Поэтому при такой сварке сварные швы, в особенности при малой толщине листа, необходимо относить ют мест, соприкасающихся с корродирующей средой. [c.24]

    При сварке биметалла кромку обрабатывают с двух сторон. Сначала сваривают основной слой, а затем соответствующими электродами — плакирующий слой. Если двусторонний доступ к сварному шву невозможен, допускается односторонняя сварка с последовательной заваркой обоих слоев. Двуслойную сталь с плакирующим слоем из стали Х18Н10Т или Х17Н13М2Т применяют при температуре до 450° С. Сварка углеродистой стали с кислотостойкой возможна сварной шов получается достаточно прочным, однако коррозионная стойкость кислотостойкой стали вблизи сварного шва снижается вследствие диффузии легирующих элементов и изменения структуры металла. Поэтому при такой сварке сварные швы, в особенности при малой толщине листа, необходимо относить от мест, соприкасающихся с корродирующей средой. На рис. 2 показан узел приварки боковых лап из углеродистой стали к аппарату из нержавеющей стали. На стенку 1 аппарата из нержавеющей стали марки Х18Н9Т приваривается накладка 2 из той же стали, к которой привариваются лапы 3 из стали марки Ст. 3. [c.23]

    Ещё сложнее металлург]1я дуговой сварки легированных сталей. Поведение отдельных легирующих элементов, добавка или выгорание их, а также необходимость получения химически однородного II структурно близкого к основному металлу металла сварного шва чребуют rv yбoкoro изучения и продуманно технологии сварки. К тому же швы сварных соединений из нержавеющей стали должн . быть прочными н плотными. [c.77]

    Стали, содержащие 17—18% хро.ма, хорошо свариваются дуговым способом аустенитнымп электродами Э50Я со стержнем пз проволоки ОХ18Н9. В целях сокращения зоны образования крупнозернистой структуры процесс сварки следует вести возможно быстрее и применять медные планки под кромки для отвода тепла. Можно также производить сварку электродами Ж17 с об.мазкой НЖ1. Газовая сварка хромистых сталей должна применяться в исключительных случаях. При сварке следует пользоваться строго нормальным пламенем избыток ацетилена, повышая содержание углерода, увеличивает твёрдость и уменьшает вязкость шва избыток кислорода способствует выгоранию легирующих элементов. Метод сваркн применять только левый. Пламя горелки не должно быть направлено на сварочную ванну. При газовой сварке следует применять флюс. Лучшие результаты получаются при следующем составе флюса  [c.142]

    По свариваемости мартенситно-стареющие стали превосходят широко используемые углеродистые легированные стали. Они мало чувствительны к образованию горячих и холодных трещин, обеспечивают повьппенный уровень механических свойстъ сварных соединений в нетермообработанном состоянии и возможность достижения равнопрочности основному мета1шу проведением после сварки старения. Высокая прокаливаемость мартенситно-стареющих сталей предопределяет получение мартенситной структуры независимо от скорости охлаждения после аустенитизации. Повышенное содержание легирующих элементов можег сместить температуру окончания мартенситного превращения ниже комнатной, что обусловит наличие в структуре определенного количества остаточного аустенита. Другой причиной его появления являйся нагрев закаленной стали на температуру, близкую к 600 С, что приводит к обратному а-у-превращению. [c.263]

    При сварке стали 25-20 а-фаза может образоваться и в процессе охлаждения даже однопроходного шва, если он содержит повышенное количество легирующих примесей (4— 5% З и Мо) или концентрация хрома в нем достигает 28— 30%. В аустенитно-ферритных швах а-фаза появляется непосредственно в феррите, чего обычно не бывает в аустените. [c.158]

    Особенности конструирования элементов корпусов сосудов из аустенитных сталей. Основным технологическим приемом изготовления корпусов сосудов из аустенитных сталей является сварка. При конструировании сварных корпусов необходимо учитывать дефицитность и высокую стоимость аустенитных сталей (в 1,5— 3,9 раза дороже качественно конструкционной стали в зависимости от состава и сортамента). Из высоколегированных сталей следует изготовлять лишь те элементы корпуса, которые подвержены воздействию агрессивной среды, выполняя остальные детали из углеродистых сталей но ГОСТ 380 -71. При перегреве в процессе сварки возможно выгорание легирующих элементов и образование карбидов хрома с последую[цими потерями антикоррозионных свойств и появлением ослонности к межкристаллитной коррозии. Для исключения последней в сварных конструкциях используют аустенитные стали, дополнительно легированные титаном, который связывает карбиды хрома. [c.115]

    Основная масса алюминия используется для получения легких сплавов — дюралюмина (94% А1, остальное Си, Mg, Мп, Ре и 81), силумина (85—90% А1, 10—14% 81, остальное N3) и др. Алюминий применяется, кроме того, как легирующая добавка к сплавам для придания им жаростойкости. Алюминий и его сплавы занимают одно из главных мест как конструкционные материалы в самолетостроении, ракетостроении, машиностроении и т. п. Коррозионная стойкость алюминия (особенно анодированного) значительно превосходит коррозионную стойкость стали. Поэтому его сплавы используются как конструкционные материалы и в судостроении. С -элементами алюминий образует химические соединения — интерметаллиды (алюми-ниды) М1А1, Ы1зА1, СоА1 и др., которые используются в качестве жаропрочных материалов. Алюминий применяется в алюминотермии для получения ряда металлов и для сварки термитным методом. Алюминотермия основана на высоком сродстве алюминия к кислороду. Например, в реакции, протекающей по уравнению [c.279]

    Лигатур Ы.1Б металлургии черных и цветных металлов титан применяется в качестве раскислителя и деазотизатора, так как он энергично соединяется с кислородом и азотом, образуя соединения, уходящие в шлак.сЛля этой цели используют ферротитан (18—25% Т1), купротитан (5—12% Т1), алютит (40% А1, 22—50% Т1 и до 40% Си). Очистка от кислорода способствует образованию тонкой плотной структуры стали, обладающей повышенными механическими свойствами. Титан связывает и серу, вызывающую красноломкость стали, х/ При введении титана в качестве легирующей добавки в хромо-никелевые нержавеющие стали (до 0,8%) образуются включения карбидов титана, повышающие жаростойкость и уменьшающие склонность к межкристаллитной коррозии при сварке и термической обработке. У Присадка 0,05—0,15% титана к обычной углеродистой стали облагораживает ее и улучшает механические свойства. Введение титана в алюминиево-магниевые сплавы (до 0,6%) улучшает их механические свойства, повышает коррозийную стойкость и устойчивость к окислению при нагревании [II, 35]. [c.242]

    Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания. [c.31]

    Молибден. Улучшая технологичность аустенитных материалов при сварке и общую коррозионную стойкость, молибден повышает их склонность к КР. Еще более отрицательный эффект получается при одновременном легировании молибденом и марганцем. Молибден оказывает отрицательное влияние на стойкость аустенитных сталей против КР уже с сотых долей процента. Влияние молибдена, иногда, может быть снивелировано положительным влиянием углерода или других легирующих элементов (никеля, меди). [c.72]

    Характерные для швов, сваренных с ЭМП, отличия в структуре и распределении легирующих элементов дополняются при сварке материалов, претерпевающих полиморфные превращения в твердой фазе, благоприятным изменением характера выделения продуктов распада первичной структуры, что делает конечную структуру более однородной. Это приводит к повышению ударной вязкости металла шва при сварке с ЭМП, например, сплава ВТ6С (на образцах, подвергнутых старению) с 5 кгс м/см до 7,55 кгс м см и снижению порога хладноломкости сварных соединений стали 09Г2С с минус 60 до минус 70° С. [c.29]

    Применение. П.-компонент мишметалла, магн. сплавов с Со и Ni, легирующая добавка к стали и др. сплавам. Оксиды П.-компоненты спец. стекол для защиты глаз от желтого излучения Na, а также УФ и ИК излучения при сварке, обесцвечивают железосодержащие стекла, пигменты для цветного стекла, художеств, керамики. Смеси оксидов Рг(П1) и e(IV)-основа полиритов (полирующие порошки) для оптич. линз, компоненты катализаторов крекинга. [c.83]

    Свариваемость легированных сталей зависит от содержания и концентрации легирующих компонентов. О влиянии кремния и марганца было сказано выше. Хром при содержании его в стали до 0,9% не оказывает влияния на качество сварки, при повышении его содержания хром образует оксиды хрома С2О3, которые резко повышают твердость стали. Никель не снижает качества сварных швов. Молибден при сварке ухудшает качество сварного шва, легко выгорает, способствует образованию трещин. Ванадий ухудшает свариваемость, так как способствует образованию закалочных структур в металле шва и околошовной зоны. Легко выгорает и окисляется. Вольфрам в процессе сварки может легко окисляться и выгорать. Титан и ниобий способствуют карбидообразованию и поэтому препятствуют образованию карбидов хрома. Ниобий способствует образованию горячих трещин. [c.393]


Смотреть страницы где упоминается термин Сварка из легированных сталей: [c.19]    [c.116]    [c.138]    [c.336]    [c.98]    [c.98]    [c.365]    [c.24]    [c.98]    [c.63]    [c.137]    [c.222]    [c.365]   
Ремонт и эксплуатация технологических трубопроводов в химической, нефтяной и газовой промышленности (1966) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Сварка сталей

Сталь легированные



© 2025 chem21.info Реклама на сайте