Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма сульфидный

    Сурьма по некоторым данным также являстся очень сильным ядом. Есть указания , что сурьма вредна лишь в больших количествах, когда она механически обволакивает поверхность катализатора. Ввиду малой летучести трехокиси сурьмы нет оснований опасаться попадания ее в заметных количествах в газ, получаемый обжигом содержащих сурьму сульфидных руд. [c.99]

    Источниками сурьмы являются ее руды (сульфидные), сурьмянистые соли натрия, получаемые в качестве отхода при рафинировании свинца расплавленной щелочью, и шламы электролитического рафинирования свинца. [c.270]


    Электролитическое осаждение сурьмы из растворов от выщелачивания бедных руд и концентратов лучше всего осуществляется в сульфидных растворах. Что касается задачи получения металла с содержанием примесей в сумме не выше [c.275]

    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. [c.120]

    Распространенность азота и фосфора на Земле достаточно велика (азот—главная составная часть воздуха, а фосфор в. о-дит в состав многих минералов и руд) мышьяк, сурьма п висмут считаются редкими элементами (образуют, в основном, сульфидные минералы). [c.207]

    Мышьяк, сурьму и висмут в свободном состоянии получают обычно путем карбо- или металлотермического восстановления оксидов. Сульфидные минералы при этом предварительно подвергают окислительному обжигу. Поскольку мышьяк и его аналоги обычно ассоциированы со многими металлами, в процессе восстановления образуются интерметаллические сплавы (твердые раство- [c.284]

    Другой вариант переработки сульфидных концентратов — разложение серной кислотой (1 1) при 80—90° в раствор переходит в основном только таллий. Большая часть кадмия, мышьяка, сурьмы и других элементов остается в осадке. [c.345]

    Распространение в природе и получение в свободном состоянии. р-Металлы УА-группы в природе встречаются редко, и содержание в земной коре сурьмы составляет 4-10 , а висмута 2-10 масс.%. В природе они встречаются в виде сульфидных руд и чаще всего сопутствуют другим металлам в полиметаллических рудах. Главными минералами, содержащими 5Ь и В1, являются сурьмяный блеск (антимонит) ЗЬаЗз и висмутовый блеск (висмутин) В 283. [c.438]

    Состав промышленных концентратов в сильной мере зависит от состава исходной руды и от применяемого метода обогащения. Содержание сурьмы в концентратах колеблется от 12—15 до 60—65%. Содержание Си в концентратах может достигать 25%, РЬ — 10%, Аз — 7% и Ге — 20%. В концентратах, полученных из сульфидных руд, содержится 25—30% серы в ряде концентратов содержание ЗЮз составляет 6—12% [478]. [c.9]


    Для разложения сульфидных руд спеканием в восстановительных условиях применяют смеси порошкообразного железа и окиси цинка. В результате термической реакции образуется сульфид железа, а восстановленная до металла ртуть количественно отгоняется. Пары ртути конденсируют на охлаждаемой золотой крышке и в образующейся амальгаме определяют ртуть гравиметрическим методом. Окись цинка реагирует с мышьяком и сурьмой с образованием цинковых солей, поэтому эти металлы не отгоняются вместе с ртутью. Этот метод, предложенный Эшка, применяют до сих пор как стандартный для определения содержания ртути в киновари (93J. [c.139]

    Определению мышьяка, кроме сурьмы и германия, образующих подобно окрашенные продукты реакции с диэтилдитиокарбаминатом серебра, мешает сероводород и меркаптаны, реагирующие с диэтилдитиокарбаминатом серебра с образованием соответственно сульфида серебра и других нерастворимых и растворимых окрашенных соединений [680]. Для устранения их мешающего влияния выходящие из реакционной колбы газы предварительно пропускают через слой ваты, пропитанной ацетатом свинца. В присутствии больших количеств сульфидной серы пробу предварительно следует обрабатывать соляной кислотой. [c.70]

    Сульфидные руды, которые могут содержать мышьяк, свинец или сурьму, должны прокаливаться в фарфоровых тиглях. [c.162]

    Осаждаемое,ТЬ сульфида сурьмы (III или V) в разбавленных минеральнокислых растворах (I н. или слабее по соляной кислоте) может иногда иметь значение для отделения небольших количеств сурьмы. Осаждение в присутствии оксалатов [отделение от олова (IV)] или фторидов (отделение от олова и германия), вероятно, может найти такое же применение при определении следов сурьмы, как и в макроанализе. Неизвестно, можно ли отделить относительно большие количества мышьяка (III) от очень малых количеств сурьмы сульфидным осаждением в концентрированной соляной кислоте (6—9 и.) существует опаснсЯггь потери сурьмы вследствие соосаждения или последующего оса--недения. Растворимость сульфида сурьмы в щелочном pa TBOpie иногда используют для отделения, например, от меди (стр. 470).  [c.462]

    У донорных атомов таких лигандов как окись азота, соединения трехвалентного фосфора, мышьяка, сурьмы, сульфидной серы RaS имеются пустые -орбитали. Они образуют, например, такие комплексы [Ag( NR)4 , [Fe( NR)6p+, где NR —молекулы изоцианидов [NiLi], где L = РРз, РСЬ, P(O N)a [Mn(N0)( 0)4], [ r(N0)4], [Mn(NO)a O]. [c.94]

    В методе Б (см. ниже) даны указания по отделению сурьмы сульфидным осаждением и определению ее в присутствии галлия, таллия и золота Окончательное определение сурьмы проводится в основном по методу Вебстера и Файрхола. В табл. 37 приведены типичные данные анализов, полученные по этому методу. [c.233]

    Содержание в земной коре мышьяка, сурьмы и висмута сравнительно невелико. Они обычно встречаются в виде сульфидных минералов AsjSj — аурипигмент, AS4S4 — реальгар, Sb. Sa — сурьмяный блеск (антимонит), В1. 5з — висмутовый блеск (висмутин), а также FeAsS — мышьяковый колчедан (арсенопирит). [c.379]

    Сульфидный способ электролиза применяется для извлечения сурьмы из бедных окисленно-сульфидных руд. Он был проверен в Гиредмете и используется на одном из отечественных заводов. Раствором для выщелачивания является смесь солей SNaaS и 4NaOH. [c.272]

    Электролиты для рафинирования олова можно подразделить на две группы щелочные и кислые. К первым относятся щелочносульфидные растворы. Ко вторым — кремнефтористоводородные, сульфатные, смешанные сульфатно-хлоридные электролиты, сульф-аминовые и др. Щелочно-сульфидные растворы первыми получили применение в рафинировании олова олово в них четырехвалентно и находится преимущественно в виде тиостанната натрия NaiSnSi. Электролит состоит из раствора NajS (около 100 г/л) с добавкой или без добавки некоторого количества едкого /натра. Электролиз ведется при высоких температурах (- 90°С). Применение такого электролита исключает опасность катодного осаждения свинца, так как последний дает нерастворимый сульфид. Наряду с этим возникает возможность соосаждения сурьмы, поскольку она в некоторой степени анодПо растворяется поэтому содержание ее в анодном металле ограничивается (предел содержания в аноде сурьмы 0,5%). [c.118]

    Использование тока при заряде будет лучше, если процесс вести при большей концентрации ионов НРеОг", т. е. в более концентрированных растворах щелочи. При снижении плотности тока перенапряжение для выделения водорода падает резче, чем для выделения железа, поэтому уменьшается и выход железа по току. Применять при заряде очень большие плотности тока нельзя, так как у поверхности электрода раствор локально обеднеет ионами НРе02". Потенциал железного электрода в щелочи на А5мв отрицательней потенциала водородного электрода в том же растворе. Это является причиной непрерывного самопроизвольного растворения железного электрода в электролите. Перенапряжение для выделения водорода на железе, как уже сказано, невелико, поэтому скорость саморастворения железа получается заметной ( 40°/о за месяц). Большой саморазряд и быстрая пассивация при низких температурах — основные недостатки железного электрода, препятствующие полной замене им более дорогого кадмиевого электрода. Железный электрод очень чувствителен к примесям. Активирующее действие оказывают окислы никеля, мышьяк, сурьма и сульфидная сера. (Никель облегчает зарядный процесс, а сера — разрядный). [c.516]


    Особенно высокие концентрации индия наблюдаются в сложных сульфидных минералах — сульфостаннатах свинца и сурьмы, например в цилиндрите 8п4РЬз8Ь2514. В них содержание индия может достигать нескольких десятых долей процента. Иногда резко повышенные концентрации индия наблюдаются и в некоторых силикатах. [c.301]

    Наибольший практический и теоретический интерес представляют сложные электролиты, в которых катион осаждаемого металла содержится в комплексном анионе (например, сульфидно-щелочной электролит). В гидрометаллургии сурьмы принято считать, что в сульфиднощелочном электролите сурьма находится в виде аниона 8Ь8з , образующегося по реакции [c.511]

    Так как сульфидный анион сурьмы весьма слабо диссоциирован (СзьЗ+ =10 ), то предполагалось, что катодное осаждение металла происходит с участием в реакции этого аниона. Однако результаты исследований, представленные в табл. 51, свидетельствуют о том, что реакция (XXI.3) не единственная. Из опытных данных следует, что при небольшом избытке свободного серни- [c.511]

    В настоящее время железные аноды нашли промышленное применение при электроизвлечении сурьмы из сульфидно-щелочных электролитов. В случае анодной поляризации железа уже при ф = 0,55 в начинается их пассивация. Применение железных анодов вызывает необходимость работать с большими плотностями тока г а> >1200 а/м . Потенциал анода при этом превышает 1 в, т. е, значительный расход энергии связан с преодолением анодных торможений. Изучение поведения железного электрода, поверхность которого запассивирована нанесением слоя окисла Рез04 (химическим воронением), показало, что вороненые аноды более устойчивы в суль-фидно-щелочных электролитах. Так как при одной и той же плотности тока потенциал вороненого анода отрицательнее потенциала железного анода, то это позволяет пропорционально уменьшить расход электрической энергии. [c.529]

    Для обогащения сульфидных и комплексных сурьмяных руд наиболее часто используются методы флотации. Сульфидно-окисленные руды обогащают комбинированными методами. Бедные сульфидно-окисленные руды и руды, содержащие золото, подвергают обжигу с отгонкой сурьмы в виде ЗЬаОд. Гравитационные методы хотя и не обеспечивают хорошего извлечения сурьмы из руд, но вследствие своей простоты все еще находят применение. [c.9]

    Разложение при помощи соляной кислоты. Природный сульфид свинца — галенит разлагают концентрированной НС1 на холоду. Пирит в соляной кислоте, свободной от хлора, растворяется незначительно. Соляной кислотой разлагаются пирротин, сфалерит, его богатая железом разность марматит и сульфид марганца (алабандин). При определении сульфатной серы в рудах, содержащих значительное количество пирротина, при разложении соляной кислотой происходит частичное окисление сульфидной серы до сульфатной. Полное окисление происходит при разложении сульфидов хлорноватокислым калием в среде достаточно концентрированной соляной кислоты при этом легко разлагаются сульфиды и сульфосоли мышьяка и сурьмы. Соляная кислота не разлагает молибденит M0S2 и киноварь HgS, однако в присутствии хрома-тов эти минералы растворяются полностью. Пириты и халькопирит полностью разлагаются, при этом сульфидная сера количественно окисляется до сульфатной [1325]. Сульфиды меди, мышьяка трудно или вовсе нерастворимы в соляной кислоте. [c.161]

    Предложены также гидрометаллургические методы переработки ртутных и комплексных богатых руд или концентратов, а также для извлечения вторичной руды из отходов. Метод заключается в выщелачивании ртути из перерабатываемого продукта раствором сульфида натрия вследствие образования комплексной соли NaaHgSj. Из сульфидно-щелочных растворов (содержащих кроме ртути сульфосоли сурьмы и мышьяка) ртуть осаждают цементацией алюминием. Показана возможность цементации ртути из ртут- [c.10]

    Из сульфидно-щелочных растворов ртуть может быть также выделена электролизом в ваннах с диафрагмами и с нгелезными электродами. При этом ртуть и сурьма осаждаются совместно, и ртуть отделяется отн атием катодного осадка. Другой метод получения ртути гидрометаллургическим способом состоит из цианирования хвостов после амальгамирования и осаждеиия ртути нз щелочных цианистых растворов металлическим цинком. Гидрометаллургические методы переработки ртутьсодержащего сырья применяют меньше по сравнению с пирометаллургическими. [c.11]

    Другие металлы, способные образовывать в сульфидно-ш елоч-ных растворах сульфосоли (Sn, Ge, V, W и Мо), в растворах ртутно-сурьмяного производства практически отсутствуют. Можно проводить прямое полярографическое определение ртути в присутствии сурьмы и мышьяка в сульфидно-ш елочных растворах ртутно-сурьмяного производства. На фоне 0,6 ilf ацетата натрия в присутствии ЭДТА можно определять ртуть в присутствии РЬ, Мп, d и Zn [852]. Показана возможность определения ртути и серебра в их смеси на фоне 0,01 N H IO4 i М NaBr. [c.98]

    Сульфиды тяжелых металлов можно разлагать растиранием их с кристаллическим иодом. В результате реакции сульфидная сера окисляется до элементной и образуется иодид минералообразующего элел1ента [128]. Этот метод разложения и количественного определения был примейен при анализе киновари [127]. Сульфиды ртути (киноварь), сурьмы (антимонит) и мышьяка (реальгар и аурипигмент) могут быть легко переведены в рас- [c.138]

    Для определения ртути в сульфидно-щелочных растворах сурьмяного производства предложены полярографические методы. Сурьма, присутствующая в растворах в больших количествах, мешает определению ртути, так как в иодидном электролите она полярографируется при потенциале, близком к потенциалу восстановления ртути, и завышает результаты анализа. Поэтому необходимо отделять сурьму или маскировать ее. [c.152]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]


Смотреть страницы где упоминается термин Сурьма сульфидный: [c.327]    [c.284]    [c.424]    [c.512]    [c.409]    [c.555]    [c.478]    [c.119]    [c.539]    [c.163]    [c.11]    [c.187]    [c.180]    [c.539]    [c.20]   
Колориметрические методы определения следов металлов (1964) -- [ c.227 , c.232 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Сульфидный ИСЭ



© 2025 chem21.info Реклама на сайте