Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы ртуть

    Как видно, жидкий металл ртуть отличается большой величиной поверхностного натяжения. Органические жидкости — спирты, эфиры, ацетон, бензол — имеют малые значения а. Поверхностное натяжение связано обратной зависимостью с температурой. С повышением температуры, как установил Д. И. Менделеев, поверхностное натяже 1ие уменьшается и при критической температуре становится равным нулю. Нулевое значение о при критической температуре объясняется отсутствием мениска жидкости. Ниже приведено поверхностное натяжение воды при различных температурах  [c.41]


    Один из наиболее распространенных и эффективных методов устранения отходов — их сжигание. Оно сопровождается образованием диоксида углерода, воды и золы, а также наносящих наибольщий ущерб окружающей среде вредных компонентов, таких, как окислы серы, азота, галогены и тяжелые металлы (ртуть, мышьяк, селен, свинец, кадмий и др.). Если газообразные продукты процесса сжигания отходов содержат повышенные концентрации вредных примесей, то для снижения их выбросов в атмосферу до требуемых стандартами норм необходима вторичная обработка, включающая дожигание, промывку или фильтрацию продуктов сгорания [51]. [c.137]

    Электрокапиллярные явления отражают зависимость пограничного натяжения на границе электрод — раствор от потенциала электрода и состава раствора. Для жидких металлов (ртуть, галлий, амальгамы, расплавы) пограничное натяжение у совпадает с обратимой поверхностной работой а и может быть экспериментально измерено, так как жидкая граница раздела допускает изменение ее поверхности в обратимых условиях (достаточно, например, наклонить стаканчик со ртутью, покрытой раствором, чтобы изменилась поверхность ртутного электрода). С другой стороны, даже небольшое упругое растяжение твердого электрода приводит к увеличению расстояния между атомами металла на поверхности, а следовательно, растянутая поверхность не идентична первоначальной и имеет иное значение о. Если при упругом растяжении площадь поверхности увеличилась на с15, то затраченная на растяжение работа равна [c.171]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    Было найдено (см., например, работы Луггина), что положение максимума электрокапиллярной кривой оказывается иным, если вместо ртути использовать легкоплавкие сплавы или амальгамы. С наибольшей полнотой этот вопрос был изучен Фрумкиным с сотр. По их данным, потенциал максимума электрокапиллярной кривой галлия составляет —0,69 В, а насыщенной амальгамы индия —0,65 В по водородной шкале. Более того, как было установлено еще Гуи, даже для одного и того же металла — ртути — потенциал максимума электрокапиллярной кривой изменяется в широких пределах в зависимости от состава раствора. [c.250]

    Экспериментально определяемые значения краевых углов при различных потенциалах твердой металлической поверхности (платина, серебро, цинк и др.)> как правило, плохо воспроизводимы вследствие энергетической неоднородности и шероховатости таких поверхностей. Поверхность жидкого металла (ртуть, амальгамы, галлий) обычно однородна, что позволяет провести исследование зависимости os О от ср. [c.29]

    Эмульсии второго рода обозначают соответственно через в/м. В особый класс выделяют эмульсии жидких металлов (ртути, галлия) в воде, поскольку в этом случае и дисперсная фаза, и дисперсионная среда ведут себя как полярные жидкости. [c.369]

    В химическом отношении золото — малоактивный металл. На во здухе оно не изменяется, даже при сильном нагревании. Кислоты в отдельности не действуют на золото, но в смеси соляной и азотной кислот (царской водке) золото легко растворяется. Так же легко растворяется золото в хлорной воде и в аэрируемых (продуваемых воздухом) растворах цианидов щелочных металлов. Ртуть тоже растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твердой. [c.540]

    При помощи двух данных методов к настоящему времени исследовано значительное число систем, в которых варьировались состав электролита, природа металла (ртуть, висмут, свинец, сурьма и др.), а также растворитель (вода, метанол, диметилформамид, этиленгли-коль и др.). Описанные методы не всегда дают совпадающие результаты, причем расхождения тем больше, чем меньше специфическая адсорбируемость исследуемых ионов. Возможно, что это связано со специфической адсорбцией ионов сравнения, которая в методе Гур- [c.128]

    При помощи двух данных методов к настоящему времени исследовано значительное число систем, в которых варьировались состав электролита, природа металла (ртуть, висмут, свинец, сурьма и др.), а также растворитель (вода, метанол, диметилформамид, этиленгли-коль и др.). Описанные методы не всегда дают совпадающие результаты, причем расхождения тем больше, чем меньше специфическая адсорбируемость исследуемых ионов. Возможно, что это связано со специфической адсорбцией ионов сравнения, которая в методе Гурвица — Парсонса принимается равной нулю. Вносимая таким образом ошибка, естественно, оказывается тем больше, чем меньше отличаются по поверхностной активности исследуемый ион и ион сравнения. [c.134]

    Экспериментальные данные (Дж. Баркер, Ю. В. Плесков) находятся в количественном согласии с уравнением (54.7) (рис. 149). Кроме того, как видно из рис. 149, экстраполяция к / = О дает практически одно и то же значение ймо для различных металлов (ртуть, амальгамы таллия и индия, свинец). Поскольку пороговая частота со,, непосредственно связана с работой выхода электрона из металла в раствор [c.292]

    Электрокапиллярные явления отражают зависимость пограничного натяжения на границе электрод — раствор от потенциала электрода и состава раствора. Для жидких металлов (ртуть, галлий, амальгамы, расплавы) пограничное натяжение совпадает с обратимой поверхностной работой о и может быть экспериментально измерено, так как жидкая граница раздела допускает изменение ее поверхности в обратимых условиях (достаточно, например, наклонить стаканчик со ртутью, покрытой раствором, чтобы изменилась поверхность ртутного электрода). С другой стороны, поверхность твердых электродов невозможно изменять в обратимых условиях, поэтому на таких электродах величина а недоступна для экспериментального определения. [c.149]

    Мы видим, что ионы меди в реакции (а) восстанавливаются до нейтрального (металлического) состояния за счет электронов атомов менее благородного металла —железа. В реакции (б) та же медь вынуждена отдавать свои валентные электроны ионам сравнительно более благородного металла —ртути. [c.302]

    Температуры плавления и кипения металлов изменяются в широких интервалах. Наиболее легкоплавкие металлы ртуть и цезий имеют следующие температуры плавления Hg = — 38,84°, Сз = + 28,4° С. Наиболее тугоплавкими металлами являются вольфрам (т. пл. 3387° С) и рений (т. пл. 3440° С). В пределах подгруппы температуры плавления и кипения металлов имеют тенденцию понижаться, но не всегда. [c.216]

    Ртуть может быть окислена концентрированными азотной и серной кислотами. Ртуть растворяет многие металлы, образуя сплавы, называемые амальгамами с некоторыми металлами ртуть образует химические (интерметаллические) соединения. [c.213]


    Разнообразны температуры плавления и кипения металлов. Ртуть — жидкая, цезий и галлий плавятся соответственно при 29 и 29,8 С, температура плавления вольфрама 3390 °С. Вольфрам — это самый тугоплавкий металл. Он применяется для изготовления нитей электроламп. Самый легкоплавкий — ртуть (т. пл. —38,9 °С). Металлы, плавящиеся прп темпера- [c.152]

    Каломельные электроды значительно удобнее для работы. Они относятся к группе электродов, в которых металл (ртуть) покрыт слоем малорастворимой соли этого металла (каломель) и погружен в раствор какой-либо хорошо растворимой соли, содержащей тот же анион (рис. 17). [c.47]

    При помощи ультразвукового метода можно диспергировать самые разнообразные вещества графит, серу, краски, металлы (ртуть, свинец, цинк и др.), крахмал, каучук, желатин, стеарат натрия и др. [c.115]

    Пленочная конденсация. Механизм передачи теплоты при пленочной конденсации заключается в том, что теплота коидеиеации передается к поверхиости сквозь жидкую пленку, в то время как гравитационные силы обусловливают расход конденсата. Скорость конденсации намного меньше максимального значения, которое определяется максвелловской скоростью молекул. Поэтому можно считать, что температура иа поверхности раздела пар — жидкость равна температуре насыщенного пара. Это допущение применимо в большинстве практически важных случаев, одпако для жидких металлов (ртуть) его справедливость обя.зательно долж/1а проверяться. [c.95]

    Весьма разнообразны температуры плавления металлов. Самый легкоплавкий металл — ртуть Hg ее температура плавления равна — 38,9°С. Температуры плавления цезия Сз и галлия Оа соответственно равны 29°С и 29,8°С. Самый тугоплавкий металл —вольфрам его температура плавле- [c.94]

    Обращают на себя внимание довольно низкие температуры плавления металлов подгруппы галлия, чем эти металлы также похожи на металлы подгруппы цинка, только в последней самый легкоплавкий металл (ртуть) замыкает подгруппу, а обсуждаемая подгруппа, наоборот, легкоплавким галлием начинается. Это обстоя- [c.158]

    Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл — ртуть, ее темпер ату-ра плавления —38,9°С, цезий и [c.225]

    На границе раздела двух фаз можно выделить пограничный слой, так называемую поверхностную или пограничную фазу. Она обладает избытком свободной энергии по сравнению с каждой из граничащих фаз. Эта избыточная энергия, отнесенная к единице поверхности раздела фаз, т. е. удельная свободная энергия а, имеет размерность джоуль на квадратный метр (Дж-м ) или ньютон на метр (Н-м- ). В случае границы двух жидких фаз, например жидкого металла (ртути, амальгам, галлия) и раствора, удельная свободная энергия а совпадает с поверхностным или пограничным натяжением 7, имеющим ту же размерность, что и а. Если одна из граничаищх фаз представляет собой твердое кристаллическое тело, например твердый металл (серебро, медь, цинк), то удельная сво бодиая энергия уже не равна поверхностному натяжению, а связана с ним соотношением [c.234]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]

    В табл. 7 ясно виден характер изменения температур плавлепия и кипения элементарных металлов в периодах и группах. Каждый период начинается металлом с очень низкой температурой плавления, ио по мере увеличения атомного но.мера металлов в периоде температура их плавления растет и достигает. максимума в группе хрома, где находится и самый тугоплавкий металл — вольфрам (3422°С). Далее температура плавления снижается и достигает минн-мума з группах цинка, где находится са.мый легкоплавкий металл — ртуть (—39°С), и галлия. В А-группа.ч и группе цинка температуры плавления металлов с увеличением атомного номера снижаются, а в В-группах (за исключением группы цинка ПВ) растут. Примерно так же изменяются температуры кипе- [c.214]

    Физические и химические свойства. Цинк, кадмий и ртуть — тяжелые металлы. Ртуть — жидкий при обыкновенных условиях металл его температура плавления около —39°С. Значения физ -ческих свойств щи1ка, кадмия и ртути приведены в табл. 37. [c.329]

    По совокупности отличий содержания элементов от средних значений содержания элементов в волосах выявлен характер воздействия на данную груЛпу окруясающей среды. Было обнаружено высокое содержание тяжелых металлов ртути, сурьмы, кадмия, хрома, а также золота, серебра и ряда других элементов. У некоторых студентов отмечено низкое содержание жизненно важных элементов натрия, селена, кобальта, железа, меди и других. Это позволило выявить группу повышенного риска заболеваний. Кроме того, во всех образцах отсутствовал йод. Это подтверждает, что г. Салават эндемичный по йоду район. [c.184]

    Образование комплексов. Азотсодержащие соединения нефтей за счет неподеленных пар электронов азота способны образовывать донорно-акцепторные связи и комплексные соединения с галогенами, солями металлов ртути, цинка, олова, хрома(П1), меди (II) и других, карбонилами железа [207]. Однако из-за наложения электрических моментов диполя серу-, азот- и кислородсодержащих соединений, например для иодидов, амино-, тио- и ал-коксицодидов (6,67—33,33) 10 Кл-м с помощью комплексообразования невозможно селективное выделение или разделение этих классов соединений. [c.91]

    Выделение на катоде этой группы металлов возможно за счет возникно ьения перенапряжения выделения водорода на этих металлах. Их можно разделить на две основные группы по величинам перенапряжения выделения водорода на них (см. тайл. 12—14). Так металлы — ртуть, цинк, свинец, к.ад- [c.41]

    Измерение а жидких электродов (их пограничное натяжение) может быть выполнено несколькими методами. Первый метод основан на изучении формы стационарной капли жидкого металла (ртути), лежащей, например, на гладкой горизонтальной поверхности (рис. 10). Под действием сил пограничного натяжения капля стремится приобрести сфе-Рис. 10. Форма стацио- рическую форму, так как из всех тел с рав-нарнои ртутной капли объемом сфера имеет наименьшую по- [c.36]

    Свойство. Цинк, кадмий, ртуть - серебристо-белые с едва заметным голубоватым оттенком мягкие металлы. Ртуть - наиболее легкоплапкий и летучий металл. Некоторые свойства Zn, d и Hg указаны в табл. 3.14. [c.562]

    Физические свойства. Цинк, кадмий и ртуть являются тяжелыми металлами. Ртуть — единственный жидкий при обыкновенных условиях металл температура плавления его около —39° С. Плотности и атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении падают. По физическим свойствам эти металлы резко отличаются от щелочноземельных металлов (см. табл. 4). Теплоты сублимации цинка, кадмия и ртути соответственно равны 131,38 112,97 и, 64,64 кдж1г-атом. Они в 1,3—2,7 раза меньше, чем у кальция, стронция и бария, и этим объясняется большая летучесть этих металлов. При температурах, близких к абсолютному нулю, цинк (0,84° К) и ртуть (4,12° К) являются сверхпроводниками. [c.161]

    Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл - ртуть, ее температура плавления — 38,9°С, цезий и галлий плавятся соответственно при 29 и 29,8° С. Вольфрам - самый тугоплавкий метмл, температура его плавления 3390°С. Он применяется для изготовления нитей электроламп. Металлы, плавящиеся при темп(ратуре выше 1000 С, называют тугоплавкими, ниже - легкоплавкими. [c.269]


Смотреть страницы где упоминается термин Металлы ртуть: [c.268]    [c.31]    [c.27]    [c.33]    [c.357]    [c.374]    [c.33]    [c.357]    [c.192]    [c.292]    [c.33]   
Лабораторная техника органической химии (1966) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция сульфамидов и их влияние на катодное выделение металлов на ртути

Активность щелочных металлов и ртути в амальгамах

Амальгама нерастворимых в ртути металлов

Амальгама труднорастворимых в ртути металло

Винильные соединения металло ртути

Восстановление катиона до металла, не растворимого в ртути

Выделение из ртути металлов

Выделение из ртути металлов наиболее рекомендуемые жидкости

Выделение из ртути металлов окисление примесей

Выделение из ртути металлов растворение

Выделение из ртути растворенных металлов

Дифенил ртуть хлоридами металлов

Диффузии коэффициент металлов в ртути

Диффузия металлов в ртуть

Диффузия щелочных металлов в ртути

Замена на ртуть атомов тяжелых металлов, а также некоторых металлоидов

Использование ртути в качестве эталонного металла при выяснении роли адсорбции в процессах ингибирования и осложнения, возникающие при этом

Константа скорости диффузии металла в ртути

Коэффициент металла в ртути

Металлы растворимые в ртути

Металлы, анализ ртути

Металлы, растворимость в ртути

Нагревание минеральными маслами. Нагревание перегретой водой Нагревание органическими теплоносителями. Нагревание расплавленными солями. Нагревание ртутью и жидкими металлами. Нагревание электрическим током

Нагревание ртутью и жидкими металлами

Нитраты металлов нитрующие ртути

О распределении соединений металлов с 8-оксихинолином между водой и органическими растворителями. Оксихинолинаты цинка, кадмия и ртути и их координационные соединения со спиртами и аминами Умланд, В. Гофман

Обмен радикалами между соединениями других металлов, кроме ртути

Определение ртути в виде металла (метод

Определение ртути металлах

Ориентировочная растворимость некоторых металлов в ртути при

Очистка ртути металлов при различной обработке

Очистка ртути от органических веществ растворенных металло

Очистка ртути от растворенных металло

Получение амальгам прямым растворением металлов в ртути

Получение хлора взаимодействием соляной кислоты с перманганатом калия ( 58). Взаимодействие хлора с металлами и неметаллами ( 59). Горение алюминия в броме ( 60). Горение фосфора в броме ( 61). Взаимодействие йода с алюминием ( 62). Взаимодействие йода со ртутью ( 63). Взаимодействие йода с фосфором ( 64). Взаимодействие йода с хлором ( 65). Возгонка йода

Промывные жидкости для растворения металлов, загрязняющих ртут

Промывные жидкости для растворения металлов, загрязняющих ртуть

Промышленное получение чистых металлов с применением ртути

Растворимовть металлов в ртути

Растворимость и диффузия металлов в ртуть

Растворимость металлов и ртути. Типы амальгам

Ртуть в виде металла

Ртуть взаимодействие с металлами

Ртуть влияние на металлы

Ртуть действие на металлы

Ртуть колебания связей с металлами

Ртуть от металлов на катионитах

Ртуть при извлечении благородных металлов из руд

Ртуть растворение металлов

Ртуть растворимость в ртути металло

Ртуть электролитическое выделение металлов

Ртуть, выделение в виде металла

Синтезы органических соединений ртути заменой на ртуть кислотных остатков и атомов тяжелых металлов в органических соединениях

Синтезы ртутноорганических соединений ртути заменой на ртуть кислотных остатков, атомов тяжелых металлов и некоторых металлоидов в органических соединениях

Соединения ртути, меди, цинка, олова и других металлов

Электрокапиллярные явления на ртути и твердых металлах

хлорвинил ртуть обмен радикалами с другими металлами



© 2025 chem21.info Реклама на сайте