Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости удаление газов

    В главе II (с. 69) даны некоторые сведения о разделении суспензий экспрессией со стадией консолидации осадка под действием эластичной перегородки, по существу аналогичной стадии обезвоживания осадка при помощи диафрагмы. Проведено теоретическое и экспериментальное исследование сжатия осадков, поры которых частично заполнены жидкостью (ненасыщенные осадки), экспрессией при помощи эластичной перегородки. Отмечены две стадии процесса сжатие газа в порах удаление газа и жидкости из пор. Приведено мате- [c.284]


    Между шириной сливного стакана х и длиной у вылета струи должно соблюдаться неравенство у<.0,6х. Если струя перекрывает чрезмерно большую часть сечения сливного стакана, удаление газа из газированной жидкости затрудняется (см. рис. 1.21). [c.91]

    Сепарация газа и жидкости — важнейшая промысловая операция. По существу она является первой стадией подготовки газа к транспортировке. Сепаратор должен включать следующие секции и оборудование главную сепарационную секцию для удаления капель жидкости из газа, высота которой должна быть достаточна для осаждения мельчайших капель жидкости под действием силы тяжести  [c.82]

    Процесс конденсации продолжается до участка поверхности, на котором достигается равенство = I t. После конденсации и охлаждения один или несколько компонентов выводятся из системы, а обращаемая часть возвращается в технологический процесс. Неконденсирующиеся компоненты препятствуют эффективной конденсации, но высокие скорости движения газовых составляющих способствуют удалению конденсата из застойных зон в деформированных участках труб. Для таких случаев на зависимостях д = f(l) и Q = = /(/) не всегда отмечается характерный участок со сниженной плотностью теплового потока. После выпадения конденсата охлаждение газовых компонентов происходит в присутствии экранирующего слоя конденсата, поэтому процесс охлаждения идет не столь эффективно. По условиям технологии производства часто охлаждают только обращаемую составляющую парогазовой смеси, а другие компоненты смеси направляют в атмосферу или дренаж. В этом случае аппарат целесообразно эксплуатировать только в режиме конденсации с дальнейшим разделением газа н жидкости. Доохлаждение газа или жидкости возможно в отдельных АВО, в которых обеспечиваются высокие скорости движения продукта по всему сечению труб. [c.147]

    Вдув газа в жидкость через пористую нагреваемую пластину подобно пузырьковому кипению можно также рассматривать как метод интенсификации теплообмена. Хотя при этом коэффициенты теплоотдачи можно увеличить на несколько сот процентов [16], оказывается, что практическое применение вдува довольно ограничено из-за трудностей подачи и удаления газа. [c.323]

    Диффузионные процессы обратимы, т. е. направление процесса определяется законами фазового равновесия, фактическими концентрациями компонентов в обеих фазах и внешними условиями (температура, давление). Так, например, при повышении температуры и понижении давления поглощение газа жидкостью (абсорбция) может перейти в обратный процесс — в удаление газа из жидкости (десорбция). [c.20]


    В установке имеются теплообменники, для экономии тепла, система насосов для перекачки жидкостей и газов, сепараторы, конденсаторы, воздуходувки для пневмотранспорта катализатора, устройства для удаления крошки и пыли, образуюш ихся при циркуляции катализатора, различные дозаторы и т. д. [c.276]

    Каскадная абсорбционная колонна турбулентного контакта была использована для работы с растворами карбонатов натрия и кальция [653] . В абсорбере применяется насадка, не допускающая захлебывания она представляет собой сферы низкой насыпной плотности, размещенные между ограничивающими решетками достаточно далеко друг от друга, что позволяет им двигаться турбулентно и беспорядочно. На такой насадке достигается высокая степень абсорбции при больших скоростях жидкости и газа и небольшом перепаде давления. Применяемое оборудование не забивается и поэтому может быть использовано для очистки запыленных газов или даже в тех случаях, когда в процессе реакции образуются твердые продукты. Исследования, проведенные на опытном четырехступенчатом абсорбере, показали, что эффективность удаления оксида серы (IV) составила 88—96% для карбоната натрия и 78—87% для карбоната кальция. [c.133]

    Какие существуют методы удаления дисперсных твердых частиц в потоках жидкостей и газов Укажите кратко различия в методах сепарации, их преимущества и возможности. Приведите пример технологического процесса, где использовался бы один или более методы, индивидуально или в сочетании с другими. [c.580]

    Удаление влаги из твердых материалов испарением называется сушкой. В нефтепереработке применяется также процесс удаления влаги из жидкостей и газов, называемый осуш/сой. Осушка проводится методами абсорбции, адсорбции, воздействия электрического поля, испарения под вакуумом, фильтрации и т. д. [c.436]

    В пенном режиме могут проводиться технологические процессы, связанные с массообменом (адсорбция газов жидкостями, удаление летучих компонентов и жидкой фазы). В частности, экстракорпоральное насыщение крови кислородом осуществляется в пенных аппаратах ( искусственное легкое ). [c.195]

    Перечислить способы удаления газа из жидкости. [c.179]

    Предварительно обезгаженная смесь поступает из колбы, где произошло удаление газа, в дистиллятор и стекает тонким слоем 110 лотку, обогреваемому циркулирующим высококипящим минеральным маслом угол наклона лотка можно изменять. Возникает перепад температур — температура растет в направлении движения дистиллируемой жидкости. Пары, окружающие лоток, конденсируются на холодильнике, установленном под тем же углом. Имеются три зоны конденсации и четыре стока жидкости — для трех отогнанных фракций и для недистиллированного остатка. [c.311]

    Жидкость илп газ, поступающие в трубки, могут вызывать ударную коррозию. Удары потока жидкости или газа о стенки трубок могут привести к местному удалению защитной пленки с их поверхности и к последующему ее разрушению. Ударная коррозия чаще всего встречается у входных концов трубок. Жидкость, засоренная нерастворимыми частичками, может также способствовать уменьшению толщины стенок трубки, особенно у входных концов. [c.151]

    Чувствительность методов определения загрязненности можно существенно повысить предварительным удалением газа из жидкости, а также концентрированием твердых частиц загрязнений в контролируемом потоке, проходящем через измерительное устройство прибора. Наиболее приемлем для этой цели вихревой метод, который можно реализовать в гидроциклоне. Эту предпосылку М. Н. Новичков, Г. Ф. Большаков и В. Ф. Тимофеев [5] реализовали в приборе, который включает формирователь контрольного потока 1, измерительное 2 и регистрирующее 3 устройства (рис. 112). Прибор предназначен для непрерывного автоматизированного экспресс-контроля загрязненности рабочих жидкостей. [c.324]

    Под действием центробежных и инерционных сил взвешенные частицы довольно полно извлекаются из газа, который охлаждается и насыщается парами жидкости. Охлаждение газа ниже температуры конденсации находящихся в нем паров жидкости способствует и удалению из газа мельчайших твердых частиц, играющих в данном случае роль центров конденсации. [c.179]

    Применяют также реакторы с кипящим, или псевдоожиженным, слоем катализатора, в к-рых пылевидный катализатор поднимается восходящим потоком жидкости или газа. Преимущества Г. к. в псевдоожиженном слое-возможность использования мелкодисперсных непористых частиц, что снижает влияние внутр. диффузии, непрерывное удаление отработанного катализатора и возможность его замены, высокий коэф. теплопередачи, позволяющий поддерживать постоянную т-ру по всему объему кипящего слоя. Псевдоожиженный слой используют для р-ций с интенсивным тепловыделением, напр, при каталитич. окислении. К его недостаткам относятся повышенная истираемость катализатора и вынос частиц катализатора из реактора, к-рые затем необходимо улавливать. [c.541]

    ФПР - только квадратную либо прямоугольную. Все плиты снабжены рифлениями для стока фильтра и углублениями для накопления осадка, а для подачи и удаления осадка суспензии - сквозными отверстиями. Последние при сборке плит (рам) в пакет образуют каналы для подачи суспензии, промывной жидкости, сжатого газа и отвода фильтратов. На неподвижной плите имеются соответствующие этим каналам отверстия и штуцеры для присоединения трубопроводов. Между плитами (рамами) располагаются полотна ФП, в к-рых также находятся подобные отверстия. [c.100]


    Испарение представляет собой превращение жидкости в газ, а сублимация — превращение твердого вещества в газ (эти явления обсуждаются в гл. 9). Оба процесса происходят в результате разъединения частиц вещества, плотно упакованных в твердом или жидком теле, и удаления их на довольно большие расстояния друг от друга в газообразной фазе. Модель ковалентной связи хорошо объясняет, почему многие ковалентные вещества при комнатной температуре находятся в газовой фазе. Слабые силы межмолекулярного взаимодействия позволяют ковалентному веществу перейти в газообразное состояние при очень низких температурах. Температура плавления для Н2 равна - 259 С, а для О2 - 218,4 С. Диоксид углерода (сухой лед) при атмосферном давлении не плавится, а сублимирует (возгоняется) при температуре — 78,5° С. Силы, действующие между молекулами в твердом СО2, таковы, что при температуре, достаточной для их преодоления за счет тепловой энергии, молекулы СО2 отрываются от соседей и переходят в газообразную фазу, минуя промежуточное жидкое состояние. [c.130]

    В работе установок гидрокрекинга существует также проблема загрязнения оборудования и трубопроводов отложениями образующихся полимерных соединений. Можно выделить три причины возникновения этих загрязнений это отложение примесей, полимеризация органики и автоокисление. Отложения происходят, когда частицы примесей становятся крупными и не могут уносится потоками жидкости и газа. Неорганические отложения — это в основном продукты коррозии, мелкие частицы катализатора и неорганических солей, попавшие в сырье. Установка фильтрующих элементов может в значительной степени снизить отложения, однако при этом требуется постоянное наблюдение за их работой. К тому же они не эффективны и не задерживают отложения, образованные продуктами полимеризации. В некоторых случаях применяют удаление кислорода из сырья, однако даже его незначительное присутствие не прекращает процесс автоокисления и полимеризации. [c.147]

    Во многих случаях применение веществ, образующих с водой не очень стабильные гидраты, например сернокислый натрий, хлористый кальций, сернокислая медь, не может привести к полному высушиванию, так как вследствие гигроскопичности абсолютно безводной жидкости или газа всегда существует равновесие в распределении воды между гидратом высушивающего средства, с одной стороны, и жидкостью или газом—с другой. При помощи же таких солей, как безводный хлорнокислый магний нли сернокислый кальций, можно добиться при высушивании воздуха практически полного удаления влаги. Так, по некоторым данным, после пропускания через безводный хлорнокислый магний в 1 л воздуха остается всего 0,0005 мг воды, а при применении сернокислого кальция в 1 л воздуха сохраняется 0,004 мг воды. [c.39]

    Следует помнить, что до начала молекулярной перегонки вакуум необходимо увеличивать постепенно и долгое время выдерживать прибор с загруженной жидкостью в высоком вакууме для полного удаления газов, растворенных в жидкости и адсорбированных на стенках прибора. [c.156]

    Многие жидкости сильно пенятся, и следует соблюдать осторожность при эвакуировании в процессе удаления газов для того, чтобы избежать переброски перегоняемой жидкости через колонку в приемник. В этих случаях давление следует понижать очень медленно. Для проверки на полноту удаления газов следует быстро закрыть кран в вакуумной линии и отметить подъем давления. Если в течение нескольких минут подъем будет значительным, следует продолжить низкотемпературное обезгаживание до тех пор, пока подобная проверка не покажет, что давление остается постоянным. Лишь после того, как это будет установлено, дают температуре куба подняться до величины, необходимой для разгонки. [c.411]

    Фильтрация. Фильтрация является механическим методом освобождения жидкостей и газов от микроорганизмов. С целью сохранения стерильности жидкостей флаконы и пробирки, а также пипетки, в которые помещают такие жидкости, закрывают ватными пробками. Для предотвращения заражения через воздух, например, в хирургических стационарах используют ватно-мар-левые повязки и специальную одежду. Фильтрование применяют для стерилизации воздуха, например, с целью создания условий строгой стерильности при работе в ламинарном боксе или в помещениях, где находятся ослабленные (иммунодефицитные) больные. Для удаления микробов из жидкостей обычно применяют мембранные фильтры с диаметром пор менее 0,2 мкм, однако многие фильтры не задерживают вирусы, микоплазмы и другие мельчайшие микроорганизмы. [c.430]

    Принципиальная схема гидроочистки сернистых нефтепродуктов следующая. Смесь исходного сырья, водорода и циркулирующего газа подогревается в теплооб менниках горячим гидрогенизатом и затем в трубчатой печи до температуры 390—395 °С. Образующийся в результате реакции гидрогенизат проходит через теплообменники, где отдает тепло исходной смеси, направляется на разделение жидкости и газов в высокотемпературный сепаратор и затем, охладившись в холодильнике, в низкотемпературный сепаратор. Оттуда гидрогенизат при температуре 200 °С поступает в стабилизационную колонну, где происходит удаление основной части сероводорода, растворенного в гидрогенизате. [c.45]

    Гели большей частью образуются путем застудневания золя или путем набухания, т. е. поглощения растворителя сухим веществом. Жидкость из геля может быть удалена испарением, если она летуча. Если этот процесс сопровождается сжатием, приблизительно соответствующим объему удаленной жидкости (как г то имеет место в высыхающих гелях желатины), то получаемый продукт, хотя он и тверже и прочнее, обычно имеет вид геля и называется ксерогелем. Если при удалении жидкости сжатие минимально и жидкость заменяется газом, то получаемый продукт называется аэрогелем (стр. 237). [c.235]

    Перспективны непрерывные методы удаления газа из маловязких жидкостей. Для этого предложено, например, использовать трубу Вентури [254]. В суженой зоне трубы при кавитации струя расслаивается на жидкое ядро и охватывающий его кольцевой слой, состоящий из паров и газов. Последние могут быть удалены из трубы путем отсасывания под вакуумом через отвод, установленный в суженной зоне. Для того, чтобы трубка Вентури работала в режиме кавитации, необходимо обеспечить определенные соотношения между диаметром трубы и параметрами течения жидкости. [c.118]

    Конические дни ш а. Их обычно используют при необходимости удаления из аппаратов сыпучих твердых материалов или ЖИДК1 X с большим содержанием твердых веществ, для лучшего распр гделения жидкостей или газа по всему сечению аппарата, а также для постепен1Юго изменения скорости жидкости или газа с целью уменьшения гидравлических сопротивлений в аппарате. Конические днища изготовляют без отбортовки и с отбортовкой (см. рис. 4.2). В днищах с отбортовкой, как и в эллиптических, сварной шов вынесен за пределы зоны, работающей на изгиб. [c.77]

    Естественная конвекция носит всегда явно выраженный ламинарный характер. Однако, если поверхность нагрева имеет большую высоту, то поток нагретой жидкости или газа по мере удаления от нижней грани перестает быть спокойным и может стать турбулентным в некоторых случаях он может даже отделиться от стенки. Поэтому коэффициент теплоотдачи а не является постоянным на всем протяжении вертикальной плиты или трубки (фиг. 17). На кижней границе величина коэффициента теплоотдачи велика, по мере подъема по стенке а постепенно уменьшается, так как увеличивается толщина лам1Инарно перемещающегося вдоль стенки потока жидкости. Если пограничный слой становится турбулентным, то указанный коэффициент вновь повышается. Теоретически выведенное для местного коэффициента теплоотдачи а уравнение, правильность которого была проверена измерениями температурного и скоростного полей у вертикальной стенки, содержит в данном случае, по.лшмо разности температур А/, значение высоты плиты или поверхности Я  [c.34]

    Пенные аппараты, несколько отличающиеся по конструктивному оформлению от общеизвестных, в частности от ПГП-ЛТИ, так называемые пенные фильтры ТБИОТ-ПВП, применяются для очистки газа, главным образом в металлургии [140—141]. Пенный фильтр ПВП состоит из цилиндрического корпуса с двумя противоточными решетками и бункера, в котором поддерживается постоянный уровень жидкости. Очищаемый газ цодается по центральной трубе под нижнюю решетку и при соприкосновении с жидкостью, находящейся в бункере, проходит первую стадию очистки от крупных фракций пыли. Пройдя затем через две решетки со слоем пены и через сепаратор — брызгоуловитель (слой колец Рашига), газ очищается от пылв и газообразных примесей и удаляется сверху аппарата. Вода подается на верхнюю решетку, а также на орошение сепаратора с помощью коллектора. Наличие постоянного уровня воды в бункере, поддерживаемого с помощью переливной трубы, обеспечивает не-прерыв-ное удаление шлама и облегчает работу решеток, вследствие удаления из газа крупных частиц в самом бункере. [c.233]

    Способность цеолитов адсорбировать молекулы определенных размеров широко используют для очистки и разделения нефтепродуктов очистки газов и жидкостей, удаления двуокиси углерода, сероводорода и других сернистых соединений, повышения октанового числа бензинов (на 5—26 пунктов) в результате удаления н-алканов. В настоящее время цеолиты широкр применяют для выделения к-алканов из нефтяных фракций —от бензиновых до газойлевых включительно с содержанием н-алканов около 20% (масс.). Выделенные нормальные парафиновые углеводороды используют при производстве белковых веществ, моющих средств и других продуктов нефтехимического синтеза. Чистота н-алканов, полученных разделением на цеолитах, значительно выше, чем при выделении другими методами (более 98% при разделении цеолитами и 90—96% при разделении карбамидом). Одновременно с н-алканами получают денормализат — смесь изопарафиновых и циклических угл ёводородов. [c.253]

    Нагревание глухим паром. Наиболее распространено нагревание глухим паром, передающим тепло через стенку теплообменного аппарата Принципиальная схема нагревания глухим паром приведена на рис. У111-1. Греющий пар из генератора пара — парового котла / направляется в теплообменник 2, где жидкость (или газ) нагревается паром через разделяющую их стенку. Пар, соприкасаясь с более холодной стенкой, конденсируется на ней, и пленка конденсата стекает по поверхности стенки. Для того чтобы облегчить удаление конденсата, пар вводят в верхнюю часть аппарата, а конденсат отводят из его нижней части. Температура пленки конденсата близка к температуре конденсирующегося пара, и эти температуры могут быть приняты равными друг другу. [c.311]

    Межфазная поликонденсация (поликонденсация на границе раздела фаз) протекает на границе раздела двух несмешивающихся жидкостей или жидкости и газа. Межфазная поликонденсация — гетерогенный необратимый процесс, скорость которого лимитиру- ется скоростью диффузии реагентов к поверхности раздела фаз. Наиболее подробно изучена поликонденсация на границе раздела двух несмешивающихся жидкостей. Для проведения поликонденсации исходные реагенты растворяют раздельно в двух несмешивающихся жидкостях (фазах). При контакте приготовленных растворов на границе раздела фаз мгновенно образуется полимер. Для более полного контакта реагирующих соединений фазы обычно перемешивают. При синтезе, например, полиамидов или полиуретанов на границе раздела фаз образуется тонкая полимерная пленка, при удалении кото(рой йбмедленно образуется новая пленка. Таким образом, полимер может непрерывно удаляться из зоны реакции и процесс можно вести до полного исчерпания мономеров. [c.61]

    Допустим, что через кювету, заполненную бензолом, водой, метиловым спиртам или какой-либо другой хорошо очищенной прозрачной жидкостью, проходит яркий пучок естественного света. Тогда, наблюдая этот пучок сбоку, например под углом 90°, можно видеть, что жидкость рассеивает свет, причем рассеянный свет имеет синеватофиолетовый оттенок. В начале нашего века считали, что рассеяние света прозрачными жидкостями и газами обусловлено посторонними включениями, пылинками. Но затем выяснилось, что при полном удалении пыли рассеяние света остается. Оно зависит от температуры и состава рассеивающей среды и обладает рядом других особенностей, которые не могли бы иметь места, если бы источником рассеяния были посторонние включения — пылинки. [c.128]

    Большие объемы легковоспламеняющихся и горючих жидкостей и газов, мощные установки по их подготовке и перекачке, энерговооруженность технологических процессов добычи и подготовки нефти создают потенциальную опасность возникновения пожаров, загораний и взрывов, что усугубляется удаленностью, труднодоступностью объектов отрасли, отсутствием необходимых сил и средств по тушению сложных пожаров. Поэтому проблема обеспечения пожарной безопасности объектов нефтяной промышленности весьма актуальна и имеет важное народнохозяйственное значение. [c.3]

    Внедрение систем аварийного удаления водорода. Предусмотрены мероприятия по предотвращению утечки горючих жидкостей и газов. В их числе установка в помещениях аккумуляторных батарей и зарядки электрокар приточновытяжной механической вентиляции, рассчитанной на разбавление паров серной кислоты, щелочи и удаление водорода. Устраивается также естественная вытяжка для удаления водорода из верхней зоны помещений аккумуляторных батарей и хранилища забитумированных отходов. Вытяжные транзитные воздуховоды в помещениях аккумуляторных батарей изолируются материалами с пределом огнестойкости 0,5 ч. Оборудование вытяжных систем имеет искробезопасное исполнение и 100 %-ный резерв. [c.255]

    ДЕФОРМАЦИЯ механическая (от лат. deformatio-искажение), изменение относит, расстояния между двумя произвольно выбранными точками в теле. В твердых телах Д. приводит к изменению формы или размеров тела цели ком или его части, в жидкостях и газах-к течению. Осн виды Д.-растяжение, сдвиг, кручение, изгиб, сжатие (од ноосное или всестороннее). Термин Д. относят как процессу, протекающему во времени, так и к его резуль тату, выражаемому величиной, к-рая характеризует относит изменение размеров или формы любого мысленно вы деленного элемента тела. Различают упругую Д., пол ностью исчезающую после удаления вызвавшей ее на грузки, пластическую, или Д. вязкого течения, к-рая остается после снятия вызвавшего ее внеш. воздействия вязкоупругую, или запаздывающую, к-рая медленно и частично уменьшается после снятия нагрузки под действием протекающих в теле релаксац. процессов. Все реальные твердые тела, в к-рых доминируют упругие Д., обладают и пластич. св-вами. Однако обычно твердые тела можно считать упругими, пока нагрузка не превысит нек-рого предела тогда тело либо разрушается, либо становится заметной пластич. Д. Для жидкостей определяющую роль играют пластич. Д., хотя всегда можно установить в них существование упругих Д. Для газов объемная Д. является упругой, а сдвиговая-необратимой. [c.31]

    Одним из важнейших факторов, определяющих скорость моющего действия растворов СМС, является смачиваемость. Смачиваемость -это физическое явление, происходящее на границе соприкосновения трех фаз, одна из которых твердое тело, а две другие - жидкости или жидкость и газ. При смачивании молекулы жидкости взаимодействуют С молекулами твердого тела (например, загрязнения) и жидкость растекается по поверхности, покрывая ее. В данном случае силы межмолекулярного взаимодействия между жидкостью и твердым телом больше, чем между молекулами жидкости, т. е. смачиваемость твердого тела тем лучше, чем меньше взаимодействие между молекулами жидкости. Увеличению смачивающей способности способствует введение в моющий раствор ПАВ, понижающих его поверхностное натяжение. Наличие на поверхности ткани жи )0вых веществ придает ей водоотталкиваютцие (гидрофобные) свойства. Это затрудняет смачиваемость загрязнений и их отмывку. Адсорбция молекул ПАВ на частицах жировых загрязнений увеличивает их смачиваемость и переводит их с поверхности ткани в моющий раствар. Следовате]1ь-но, ПАВ в растворе способствует удалению загрязнений с поверхности ткани, [c.20]

    Пусть имеется (рис. 1.6) холодная теплообменная поверхность, омываемая горячим потоком жидкости или газа (перпендикулярно плоскости рисунка). Около этой поверхности температура изменяется от 0 на самой поверхности до t на некотором удалении от нее (далее — изменением t можно пренебречь). Область (по нормали к поверхности), в которой наблюдается значимое изменение потенциала (при анализе теплоты — температуры), назьшается пограничным слоем (пленкой), в данном случае — тепловым. Это близкое к реальному представление удобно заменить упрощенным — модельным, согласно которому все изменение температуры от 9 до сосредоточено в достаточно тонком модельном тепловом пограничном слое толщиной 5т, так что за его пределами температура потока / по нормали к поверхности не изменяется. Согласно такому модельному представлению (dtldn) Q= А// Г, где дг г / - 0. Тогда удельный тепловой поток к стенке, соответственно вьфажению (1.10), равен q = ЦМ/Ъ ) = (V5x)Ai. [c.64]


Смотреть страницы где упоминается термин Жидкости удаление газов: [c.154]    [c.332]    [c.357]    [c.208]    [c.449]    [c.230]    [c.276]    [c.375]    [c.433]    [c.433]   
Техника лабораторного эксперимента в химии (1999) -- [ c.304 , c.305 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости



© 2025 chem21.info Реклама на сайте