Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Древесина вторичная

    В 1987 г. по сравнению с 1-986 г. объем переработки вторичного сырья для производства товаров народного потребления увеличился примерно на 14 млн. т, в том числе макулатуры — почти на 150 тыс. т, вторичных полимерных материалов — на 97 тыс. т, изношенных шин — на 147 тыс. т и отработанных нефтепродуктов — на 300 тыс. т. При этом достигнута значительная экономия дефицитных видов первичного сырья и материалов, в частности от использования макулатуры — 10,8 млн. м свежей древесины вторичных текстильных материалов — 0,8 млн. т натуральных волокон изношенных шин — 67 тыс. т синтетического каучука пиритных огарков - 3,8 млн. т железосодержащих концентратов стеклобоя — 150 тыс. т кальцинированной соды и 720 тыс. т кварцевого песка и т.д. [c.118]


    На рис. 1, б показаны ткани, присутствующие в поперечных сечениях того же побега к концу первого сезона роста после образования вторичной сосудистой ткани. Вторичный рост начинается и завершается за этот сезон сначала в основании побега, а в дальней язм распространяется вверх, пока не захватит его вершины. Сегменты камбия, показанные на рис. 1, а, соединяются, и благодаря деятельности камбия происходит значительное вторичное утолщение. Вторичная древесина (вторичная ксилема) и вторичная флоэма, обе в виде колец, находятся между островками первичной ксилемы и первичной флоэмы, которые все еще расположены по одному и тому же радиусу. Первичная ксилема осталась такой же, как на рис. 1, а вторичная ксилема, образованная в тот же год, находится с наружной стороны первичной ксилемы без какой-либо ткани между ними. Камбий по мере того, как он образовывает вторичную древесину, продвигается по направлению к [c.21]

    В ранней или поздней древесине вторичные Стенки разбухшие, но Не распавшиеся [c.102]

    Обеспечивает вторичный рост. Сосудистый камбий дает начало вторичным проводящим тканям, в том числе древесине (вторичной ксилеме) пробковый камбий образует перидерму, которая заменяет эпидермис и содержит пробку [c.130]

    Бумага. Это один из важных видов возобновляемых ресурсов. Поскольку сырьем для производства бумаги служит древесина, необходимо осуществлять новые посадки для замены вырубленных деревьев. Требуется, однако, около 25 лет для того, чтобы деревья выросли и их переработка стала экономически целесообразной. Иначе говоря, возобновление такого ресурса требует времени, а для производства тонны бумаги надо переработать около 17 деревьев. Этого хватает только для того, чтобы снабдить двух среднестатистических жителей США бумагой на один год. Кроме того, необходимо помнить, что получение бумаги из древесины весьма энергозатратное производство, а переработка макулатуры требует примерно в два раза меньше энергии. Вторичной переработке в настоящее время в США подвергается только около 20% бумаги. [c.145]

    К альтернативным ресурсам (нетрадиционным) для непосредственного производства моторных топлив могут быть отнесены следующие тяжелые нефти, промышленная технология добычи, транспорта и переработки которых в настоящее время не полностью отработана либо неконкурентоспособна по сравнению с имеющимися технологиями для обычных нефтей при существующих уровнях затрат природные битумы во всех их разновидностях и проявлениях каменные и бурые угли горючие сланцы природный (естественный) газ вторичные ресурсы, включающие сжиженный газ (углеводороды Сз—С4), получаемый при переработке нефти, природного и попутного газов, а также коксовый, доменный, генераторный газы и др. биомасса (древесина, морские водоросли, сельскохозяйственные культуры и отходы их переработки и использования и т. п.). [c.16]


    В течение ряда последних лет коллективом ученых кафедры технологии нефти и газа (УГНТУ) в сотрудничестве с нефтеперерабатывающими и нефтехимическими предприятиями Уфы и шпалопропиточными заводами Российской Федерации проведено большое количество лабораторных, опытно-промышленных и промышленных исследований, результатами которых доказана возможность производства новых товарных нефтепродуктов — нефтяных защитных пропиточных материалов, предназначенных для защиты древесины от гниения, на основе газойлевых фракций и остатков вторичных процессов переработки нефти. [c.113]

    На основе литературных данных было показано, что в силу особенностей своего химического состава (большое количество ароматических углеводородов, сернистых и азотистых гетеросоединений) газойлевые фракции и остатки вторичных процессов переработки нефти обладают хорошей биоцидной активностью по отношению к грибам и бактериям, разрушающим древесину. [c.113]

    Получение. До недавнего времени ацетон получали исключительно при сухой пе регонке древесины. Сейчас основным промышленным способом получения ацетона является каталитическое дегидрирование вторичного пропилового спирта  [c.342]

    Первоначально для изготовления бумаги использовалось растительное сырье, из которого чисто механически можно получить необходимые волокна клетчатки стебли риса (рисовая бумага), хлопок. Большую роль играло вторичное сырье. Однако по мере развития книгопечатания эти источники сырья перестали удовлетворять растущую потребность в бумаге. Особенно много бумаги стали требовать газеты, причем вопрос о качестве (белизне, прочности, долговечности) здесь оказался уже второстепенным, поскольку газета живет один день. Зная, что древесина примерно на 50 % состоит из клетчатки, к бумажной массе стали добавлять размолотую древесину. Однако такая бумага непрочна, быстро желтеет (особенно на свету). [c.311]

    Необходимо отметить, что увеличение отбора газа, кроме изменения теплового баланса шахты, может сказаться на выходе химических продуктов еще и благодаря уменьшению влияния вторичных реакций при сокращении времени пребывания газа в шахте. Особенно растет при этом выход растворимой смолы, чем, по-видимому, объясняется повышенный ее выход при газификации древесины в газогенераторах. [c.79]

    Малая экономическая рентабельность переработки макулатуры на белую бумагу ни в коей мере не снижает значения ее сбора. Использование вторичного бумажного сырья сберегает многие гектары лесных массивов, ведь с нарастанием производства целлюлозные заводы потребляют все больше древесины, существенно исчерпывая лесные ресурсы. Сбор и переработка макулатуры — важнейшая народнохозяйственная и даже государственная задача. [c.39]

    Состав глюкоманнана во вторичных стенках древесины сосны подобен глюкоманнану в первичных клеточных стенках, в то время, как глюкоманнан, содержащийся в коре, содержал больше маннозы. Необходимо, однако, отметить, что эти данные следует рассматривать как приближенные, так как исходные препараты не были тщательно очищены. [c.316]

    При оценке действия различных дереворазрушающих грибов на растительную ткань необходимо учитывать, что отдельные гифы их. движутся в толще клеточных стенок избирательно. Так, грибы белой гнили предпочитают срединную пластинку и первичную оболочку, где сосредоточен главным образом лигнин. Грибы красной или бурой гнили, наоборот, предпочитают проходить по вторичной оболочке, наиболее богатой углеводами. Соответственно различается и окраска поврежденной ими древесины. Более подробно эти вопросы будут рассмотрены в дальнейшем. [c.318]

    Детальное исследование распределения лигнина и полисахаридов в одревесневших клеточных стенках древесины ели и березы измерением интенсивности абсорбции тонкого пучка ультрафиолетовых лучей при прохождении их через прозрачный срез подтвердило преимущественное расположение лигнина в срединной пластинке и первичной стенке, а также частично в наружных слоях вторичной стенки [42, 43]. В срединной пластинке еловой древесины содержание лигнина достигает 73 /о, а во вторичной стенке — не более 16%. Отсюда следует, что полисахариды сосредоточены в основном во вторичном слое. Была сделана попытка измерить этим методом взаимное расположение целлюлозы и гемицеллюлоз. Для этого полисахариды вначале были превращены в окрашенные соединения, абсорбирующие свет. [c.320]

    Для выяснения состава отдельных слоев клеточных стенок была сделана попытка количественного определения ксилоуронидов в разных слоях трахеид и либриформа [49]. Измерения производились на волокнах из красной японской сосны, европейской пихты, бука и березы. Для этого волокна осторожно нитровали в среде уксусного ангидрида и четыреххлористого углерода. Затем наружный нитрованный слой удаляли растворением в ацетоне, после чего контролировали содержание пентозанов в остатке по фурфуролу. Было установлено, что пентозаны в древесных волокнах по слоям разделены неравномерно. Наибольшее количество пентозанов найдено в наружных слоях волокон и концентрация их падает от периферии к центру. Так, наружные слои волокон хвойной древесины содержат 50—80% пентозанов, а у лиственных почти 100%. Во вторичных слоях клеточных стенок у хвойных содержание пентозанов оказалось не более 2—4%, а у лиственных 8—10%. Таким образом, химический метод подтвердил результаты, полученные ранее методом сорбции ультрафиолетового света. [c.324]


    Поскольку объем молодой древесины при отложении слоев вторичной стенки не увеличивается, на последующих стадиях ее развития в том же объеме должно отложиться около 40 г древесинного вещества. Между тем в заполняющем молодую ткань соке содержится только 6,8 г сахарозы и инвертного сахара. Таким образом, содержащегося в соке сахара недостаточно для формирования древесинного вещества и приток сока должен превышать в несколько раз объем сока, содержащегося во вновь образовавшихся клетках древесины и луба. [c.329]

    Показана практическая возможность производства необходимого количества нефтяных антисептиков для пропитки древесины на основе тяжелых газойлевых фракций и остатков вторичных процессов переработки нефти. [c.90]

    С этой целью было исследовано большое количество газойлевых фракций и остатков вторичных процессов переработки нефти. Анализ возможных сырьевых компонентов для получения нефтяных пропиточных материалов, предназначенных для защиты древесины, являющихся продуктами переработки нефти и нефтехимического синтеза показал, что ни один из них в отдельности практически не удовлетворяет всем требованиям ГОСТ 20022.5-93 Защита древесины. Автоклавная пропитка маслянистыми защитными средствами . - [c.92]

    В коре, как и в древесине, сначала возникают первичные ткани, а затем при делении клеток вторичных меристем - камбия и пробкового камбия - образуются вторичные ткани, которые впоследствии отмирают. Наружная часть коры - корка - состоит в основном из мертвых тканей и поэтому физиологически не активна. Схематически строение коры показано на рис. 8.8. [c.206]

    Слои вторичной стенки хорошо различимы на микрофотографиях, полученных в поляризованном свете, благодаря различной ориентации в разных слоях микрофибрилл целлюлозы (см. 8.6.2), обладающей вследствие кристаллической структуры двойным лучепреломлением. Слои 8 , 82 и 8з(Т) существенно различаются по толщине 8 и 8з(Т) тонкие, а 8а толстый и образует основную массу клеточной стенки. Во всех этих слоях уже преобладает целлюлоза. Слой 81 имеет толщину 0,1...0,3 мкм в зависимости от части годичного кольца (поздняя или ранняя) и древесной породы. Толщина слоя 82 составляет в среднем 2...6 мкм с колебаниями от 1 мкм (в ранней древесине) до 7...9 мкм (в поздней древесине). Слой 8з(Т) самый тонкий (0,1.. .0,2 мкм) строение его в значительной степени зависит от древесной породы. [c.216]

    Строение клеточных стенок волокон либриформа и волокнистых трахеид в древесине лиственных пород примерно такое же, как у трахеид поздней древесины хвойных. Распределение слоев по массе приблизительно следующее у волокон либриформа Р 81 82 83 = 1 10 87 2 у волокнистых трахеид 5 16 67 12. По строению клеточных стенок паренхимные клетки и сосуды отличаются от трахеид и волокон либриформа. У сосудов также существуют первичная Р и вторичная 8 (81 + 82 + 83) [c.216]

    Минеральные компоненты, поглощаемые корневой системой дерева из почвы, по проводящим тканям поступают в ствол и крону, где распределяются между отдельными тканями. Необходимые для жизнедеятельности элементы накапливаются в запасающих, меристематических, выделительных и ассимиляционных тканях. Они могут присутствовать в виде солей, главным образом, карбонатов, оксалатов, фосфатов, силикатов и сульфатов, и быть связанными с компонентами древесины, например, с Пектиновыми веществами. Минеральные компоненты по толщине клеточной стенки распределяются очень неравномерно, концентрируясь в сложной срединной пластинке и в слоях, граничащих с полостью клетки. Поэтому в хвойных породах поздняя древесина, трахеиды которой имеют Массивную вторичную стенку, содержит меньше неорганических веществ, чем ранняя древесина. [c.528]

    Данные о строении некоторьк растительньк тканей можно найти в разньк разделах книги. В частности, строение флоэмы более подробно описано в гл. 13, где рассматривается связь между строением этой ткани и ее транспортной функцией. Развитие растительньк тканей из меристематических клеток обсз кдается в гл. 22 вместе с такими вопросами, как вторичный рост и строение древесины (вторичной ксилемы) и луба. [c.218]

    Вискозное волокно. Основным сырьем для получения вискозного волокна является древесная (обычно еловая) целлюлоза. В еловой древесине содержится около 457о целлюлозы (из 1 древесины получается около 200 кг целлюлозы). Для получения целлюлозы сухую еловую древесину разваривают со щелочами, растворами сульфита натрия или другими реагентами. Волокнистую целлюлозную массу отделяют от варочной жидкости (в которой остаются примеси), промывают, отбеливают и после вторичной промывки формуют в виде листов картона. Поступающая на заводы вискозного волокна целлюлоза должна содержать не менее 88% так называемой альфацеллюлозы (чистой целлюлозы, которая не растворяется в 18%-ном растворе едкого натра при комнатной температуре). [c.411]

    Ц. с. получают из вторичного сырья и из руд при обработке H2SO4. О азующийся р-р применяют в произ-ве вискозы, как микроудобрение и добавку к кормам, компонент электролита при получении Zn электролизом и при цинковании, как флотореагент, компонент глазных капель, для пропитки древесины, отбеливания бумаги. [c.381]

    В пром-сти Ц. X. получают действием соляной к-ты на вторичное сырье или обожженную руду. Получают Ц. х. также при наф. до 420 °С гранулированного металлич. Zn в токе I2, действием I2 на нафетые до 700 С ZnO, ZnS, р-цией Zn с H l. Очищают Ц. х. сублимацией при 600-700 С в токе I2. Ц. X. применяют как антисептик для древесины, при изготовлении пергамента, для очистки металлов перед пайкой, как компонент электролита для гальванич. покрытий в сухих элементах, как протраву при крашении. [c.382]

    Пока точно не установлена роль галактанов в креневой древесине. Возможно, что эти полисахариды играют роль в период образования вторичной стенки клеток [79]. [c.228]

    Во вторичных слоях клеточных стенок древесины сосны накапливались в больших количествах маннаны (22%) и уроновый ангидрид (25%). Ксиланы (44%) и глюканы (4,5%) откладывались в меньших количествах. [c.314]

    Эта операция осуществлялась на одревесневших срезах, предварительно освобожденных от лигнина с помощью хлорита натрия в уксуснокислой среде. Затем срезы были обработаны п-фенилаз- бензоилхлоридом с целью этерификации полисахаридов. Ярко окрашенные в оранжево-красный цвет срезы после набухания в пиридине фотометрировались. Подвергая такой обработке срезы, со стоящие из холоцеллюлозы, до и после удаления гемицеллюлоз, удалось установить, что основная масса гемицеллюлоз в древесине ели и березы сосредоточена в наружных слоях вторичной стенки. Так, при экстракции среза еловой холоцеллюлозы 16%-ным едким натром было установлено, что из наружных слоев клетки извлекается до 60—80%, из средины клеточной стенки около 50% и из слоя Зз только 167о растворимых в щелочи гемицеллюлоз от общего количества полисахаридов. Аналогичная картина наблюдалась и для поперечных срезов либриформа из древесины березы. [c.320]

    При изучении анатомического строения корня эхииацеи пурпурной на поперечном срезе видеп топкий слой пробки. Первичная кора состоит из крупных овальных или округлых клеток паренхимы. В первичной коре видны вместилища с эфирным маслом красновато-оранжевого цвета изредка встречаются одиночные каменистые клетки. Клетки эндодермы коры квадратные или закругленные. Во вторичной коре заметны участки луба, состоящие из мелких клеток, расположенных отдельными группами. Камбиальная зона хорошо выражена. В древесине сосуды крупные, расположены веретенообразно. Склеренхима занимает большую часть древесины корня. В древесине встречаются сосуды, содержащие смолу желтовато- или красновато-оранжевого цвета, расиоложеиые одиночно или группами (Рис. 2,3). [c.64]

    Синтезированные соединения были испытаны на биоцидную активность. В качестве антисептиков к воздействию плесневых грибов на древесину использовали полученные вторичные амины, содержащие диоксолановое кольцо. Нами показано, что с увеличением размера заместителя возрастает фунгицидная активность аминов. Установлено, что наибольшую активность проявляет геп-тил (4-метилен-1,3-диоксоланил)амин и бензил (4-метилен-1,3-ди-оксоланил)амин. [c.7]

    Клетки древесины сообщаются между собой через поры. Поры -это неутолщенные участки клеточной стенки. Пора не является свободным отверстием, так как в ней имеется тонкая мембрана (первичная стенка и межклеточное вещество), пронизанная мельчайшими отверстиями. В живых клетках через эти отверстия проходят тонкие нити цитоплазмы, соединяющие содержимое живых клеток в одно целое. Поре в оболочке одной клетки соответствует пора соседней клетки, то есть образуется пара пор (рис.8.6). Различают простые, окаймленные и полуокаймленные поры (пары пор). Простые поры (см. рис. 8.6, а) образуются в стенках двух смежных паренхимных клеток, а окаймленные поры (см. рис. 8.6, б) - в стенках двух смежных трахеид, располагаясь преимущественно на радиальных стенках у концов трахеид. Поздние трахеиды по сравнению с ранними имеют меньшее число пор меньших размеров (щелевидные поры). У окаймленной поры мембрана имеет в центре утолщение - торус, играющий роль клапана, который может перекрывать пору. Структура торуса отличается от структуры мембраны. Окаймление образуется нависающим выступом вторичной стенки. Оно может быть выражено четко или слабо заметно. Трахеиды с паренхимными клетками сердцевинных лучей сообщаются через полуокаймленные поры (см.рис. 8.б,в) в так называемых полях перекреста. Форма, размер и число пор в поле перекреста служат диагностическими признаками при определении хвойных древесных пород. [c.201]

    Изучение распределения компонентов древесины в клеточной стенке представляет очень трудную задачу. Распределение лигнина исследовали главным образом методом УФ-микроспектрофотометрии (работы Лан ге и др.). Содержание целлюлозы и гемицеллюлоз определяли химически ми методами после разделения слоев с помощью микроманипулятора Следует отметить, что результаты, полученные разными исследователями несколько расходятся, но общее заключение можно сделать. Сложная сре динная пластинка у хвойных пород на 60...90% состоит из лигнина (в ранней древесине в среднем примерно 70%, в поздней - 80%). Однако этот слой тонкий и лигнин срединной пластинки соответствует лишь небольшой части (15...30%) общего его количества в клеточной стенке. У лиственных пород срединная пластинка содержит меньше лигнина. Основная же масса лигнина находится во вторичной стенке, где его доля у хвойных пород составляет в среднем около 20...25% массы слоя, а у лиственных пород 12... 15%. Однако в отношении распределения лигнина по слоям вторичной стенки данные, полученные разными методами исследования, противоречивы. Более ранние результаты УФ-спектрофотометрических исследований показывали, что по направлению к полости клетки доля лигнина уменьшается. В слое 8( она больше, чем в слое 82, а в слое 8з(Т) составляет уже не более 10... 12% массы слоя для хвойных пород, тогда как у лиственных пород лигнин в этом слое вообще отсутствует. Результаты же более поздних исследований указывают на другие закономерности. В хвойной древесине во вторичной стенке наблюдается повышенная концентрация лигнина в слоях 8 и 8з по сравнению со слоем 82, а в лиственной древесине - равномерное распределение лигнина во вторичной стенке. Таким образом, требуется дальнейшее изучение распределения лигнина в клеточной стенке. [c.217]

    Изучение количественного распределения гемицеллюлоз по клеточной стенке показывает, что у хвойных пород концентрация глюкоманнанов возрастает в направлении от сложной срединной пластинки (ML + Р) к слою 8з(Т), а концентрация араби-ноглюкуроноксилана почти не меняется. У лиственных же пород относительное содержание глюнуроноксилана выше во вторичной стенке, чем в (ML + Р). Полисахариды бородавчатой мембраны в древесине хвойных пород представлены в основном га-лактоглюкоманнанами. [c.218]

    К реакциям функциональных групп относятся главным образом реакции спиртовых групп - вторичных и первичных. Реакции спиртовых фупп имеют важное значение преимущественно у целлюлозы (см. главу 16). У нецеллюлозных полисахаридов такие реакции осуществляют при изучении их химического строения (например, метилирование). К ним относятся также реакции отщепления ацетильных групп от гемицеллюлоз, реакции декарбоксилировання уроновых кислот, реакции окисления спиртовых групп. Реакции внутримолекулярных превращений у полисахаридов древесины имеют сравнительно малое значение, например, внутризвенной дегидратации при пиролизе (см. 11.12). [c.279]

    Пиролиз древесины, осуществляемый ее нагреванием до высоких температур без доступа воздуха, - один из процессов химической переработки древесины. При пиролизе происходит глубокая деструкция высокомолекулярных компонентов древесины - полисахаридов и лигнина с образованием низкомолекулярных продуктов. Термопревращения этих компонентов включают множество разнообразных реакций - термической деструкции, гидролитической деструкции, дегидратации, сопровождающихся реакциями изомеризации, диспропорционирования, окисления, а также вторичными процессами полимеризации, преимущественно конденсаци- [c.353]

    При пиролизе древесины общая картина процесса усложняется, так как реакции деструкции гемицеллюлоз и целлюлозы, а также дигнина протекают вместе. Образующиеся продукты могут вступать в разнообразные вторичные реакции. [c.359]

    Получение периодатного лигнина. Периодатный лигнин (лигнин Парвеса) получают чередующейся обработкой древесины раствором ди-гидроортопериодата натрия НазН Ю и водой при кипячении. В полисахаридах избирательно окисляются вторичные спиртовые группы с разрывом связей С(2)-С(3) в пиранозных циклах и образованием диальдегидполисаха-ридов (см. 21.1), которые очень легко подвергаются деструкции при кипячении с водой и превращаются в водорастворимые продукты. В остатке получается периодатный лигнин. Этот препарат менее изменен по сравнению с более конденсированным медно-аммиачным лигнином, но он довольно сильно окислен, о чем свидетельствует пониженное содержание метоксильных групп (см. 12.4.2). [c.368]

    Терашима с сотрудниками на основании исследований, проведенных в последнем десятилетии, приходит к заключению, что протолигнин в древесине нельзя считать полностью хаотическим полимером - результатом случайной сополимеризации смеси различных монолигнолов. Лигнин образуется в присутствии и с участием полисахаридов в биологически регулируемом процессе, тесно связанном с ходом формирования ультраструктуры лигнифицированной клеточной стенки в целом. Неизбежное следствие такого протекания процессов отложения слоев клеточной стенки и их одревеснения - гетерогенность лигнина в древесине. В хвойных деревьях различаются по составу лигнины срединной пластинки и вторичной стенки, а в лиственных деревьях существуют дополнительно различия между лигнинами волокон и сосудов. Следует подчеркнуть, что образованию лигнина предшествует отложение полисахаридов - целлюлозы в виде микрофибрилл, пектиновых веществ и гемицеллюлоз разного типа для каждой стадии отложения лигнина. [c.402]


Смотреть страницы где упоминается термин Древесина вторичная: [c.31]    [c.137]    [c.550]    [c.21]    [c.236]    [c.314]    [c.269]    [c.207]    [c.371]    [c.408]   
Химия древесины Т 1 (1959) -- [ c.20 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Древесина



© 2024 chem21.info Реклама на сайте