Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромоникелевые межкристаллитная

    Межкристаллитная коррозия распространяется по границам кристаллов или зерен. Этот вид коррозии опасен тем, что продукты коррозии остаются внутри металла, внешний вид которого пе изменяется, а прочностные свойства резко ухудшаются. Склонность хромоникелевых сталей к межкристаллитной коррозии проявляется, например, во время их сварки. Один из методов борьбы в данном случае заключается в нагреве стали до 1080— 1150 °С с последующей закалкой водой. [c.49]


    Первый вид взаимодействия в зависимости от сохранности образующейся окисной пленки на поверхности твердого металла может сопровождаться как увеличением, так и уменьшением массы металла, а иногда иметь межкристаллитный характер (аустенитные хромоникелевые стали при 750° С в жидком натрии с 0,5% кислорода). [c.145]

    Межкристаллитная коррозия (см. рис. 3. 2ж) является одним из наиболее опасных видов местной коррозии, приводящей к избирательному разрушению границ зерен, что сопровождается потерей прочности и пластичности сплава (часто без изменения внешнего его вида) и преждевременным разрушением конструкций. Коррозия этого вида наблюдается у многих сплавов хромистых и хромоникелевых сталей, никелевых сплавов, алюминиевых сплавов и др. [c.420]

    Существенным недостатком хромоникелевых так же, как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния, в том числе и межкристаллитной коррозии. [c.421]

    Межкристаллитная коррозия аустенитных хромоникелевых сталей связана с малой устойчивостью границ зерен после замедленного охлаждения или нагрева стали при 450—850° С, что имеет место главным образом при сварке. [c.421]

    Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит [c.424]

    Межкристаллитная коррозия, вызывающая разрушение металла по границам кристаллитов, приводит к резкому снижению механических свойств металла — прочности и пластичности. Межкристаллитной коррозии подвержены многие сплавы коррозионностойкие высокохромистые и хромоникелевые стали, мед- [c.162]

Рис. 129. Глубина проникновения межкристаллитной коррозии в хромоникелевой стали Рис. 129. <a href="/info/116946">Глубина проникновения</a> <a href="/info/10625">межкристаллитной коррозии</a> в хромоникелевой стали

    Хромистые стали, так же как и хромоникелевые стали, подвержены межкристаллитной коррозии в случае выпадения по границам зерен богатых хромом карбидов и обеднения хромом [c.215]

    Следует помнить, что хромоникелевые стали склонны к межкристаллитной коррозии, которая зависит от состава стали, условий термической обработки, режимов сварки, характера коррозионной среды и проявляется в температурном интервале 450— 50 С. Особенно опасно проявление межкристаллитной корро- [c.203]

    Молибден в хромоникелевой стали увеличивает химическую стойкость стали в агрессивных средах, снижает склонность к межкристаллитной коррозии, но не устраняет ее полностью. В связи с этим помимо молибдена в сталь вводят титан. [c.204]

Рис. 4.14. Склонность хромоникелевой стали типа 18-8 к межкристаллитной коррозии (МКК) в зависимости от времени и температуры выдержки и содержания углерода [1] Рис. 4.14. Склонность <a href="/info/122315">хромоникелевой стали</a> типа 18-8 к <a href="/info/10625">межкристаллитной коррозии</a> (МКК) в зависимости от времени и <a href="/info/1522791">температуры выдержки</a> и содержания углерода [1]
    Межкристаллитная коррозия (МКК) представляет собой разрушение сплава, локализованное на границах зерен. Следствием этого вида коррозии является потеря сплавом прочности и пластичности и быстрое разрушение изготовленной из него конструкции. Межкристаллитной коррозии подвержены широко применяемые сплавы, в частности высоколегированные коррозионностойкие стали (хромистые и хромоникелевые), сплавы алюминия (дюралюминий), сплавы никеля. [c.445]

    Основным легирующим элементом, повышающим стойкость металла к коррозии, является хром. При нормальных условиях его присутствие придает металлу стойкость к коррозии от влаги. При повышенных температурах хром придает металлу стойкость к коррозии, вызываемой газовыми агрессивными потоками. Она имеет место в трубах печей, реакторах, теплообменниках нагрева сырья со стороны газопродуктового потока. С ростом содержания хрома стойкость к коррозии увеличивается особой стойкостью обладают хромоникелевые сплавы. Из других добавок очень хорошо проявляет себя молибден. Однако характерным недостатком хромоникелевых сплавов является их склонность к межкристаллит-ной коррозии, при которой процесс разрушения развивается не на поверхности, а по границам кристаллов. Теория это объясняет образованием карбидов хрома при длительном нафевании сплавов выше 350°С. При этом участки, прилегающие к границам зерен или кристаллов, обедняются хромом и теряют свою коррозионную стойкость. Наиболее уязвимы для межкристаллитной коррозии сварные швы. [c.169]

    Недостатками хромоникелевых нержавеющих сталей является их склонность к межкристаллитной коррозии и относительно низкая прочность в закаленном состоянии. [c.71]

    В результате межкристаллитной коррозии в ряде случаев может наблюдаться разрушение аппаратуры и оборудования нефтеперерабатывающих и нефтехимических заводов. Так, известны примеры разрушения после сравнительно короткого срока эксплуатации технологических трубопроводов, печных труб, защитных облицовок и деталей реакторов, выполненных из хромоникелевых аустенитных сталей [153]. [c.72]

    Появление пассивируемых коррозионностойких сталей послужило также поводом для разработки анодной защиты. В сильно кислых средах высоколегированные стали, как и углеродистые, практически не поддаются катодной защите, потому что выделение водорода затрудняет необходимое снижение потенциала. Между тем с применением анодной защиты можно пассивировать и удерживать в пассивном состоянии также и высоколегированные стали. Ц. Эделеану на примере насосной системы из хромоникелевой стали в 1950 г. первый показал, что анодная поляризация корпуса насоса и подсоединенных к нему трубопроводов защищает от разъедания концентрированной серной кислотой [33], Неожиданно большая протяженность зоны анодной защиты может быть объяснена высоким сопротивлением поляризации пассивированной стали. Локк и Садбери [34] исследовали различные системы металл — среда, которые могут быть применены для анодной защиты. В 1960 г. в США уже эксплуатировалось несколько установок анодной защиты, например для складских резервуаров-хранилищ, для сосудов-реакторов в установках сульфонирования и нейтрализации. При этом достигалось не только увеличение срока службы аппаратов, но и повышение степени чистоты продукта, В 1961 г. впервые была применена в крупнопромышлен-ных масштабах анодная защита для предотвращения межкристаллитного [c.35]

    Хромоникелевые аустенитные стали с 18% Сг и 8 /о N1, со держащие титан или ниобий, не склонны к межкристаллитной коррозии и обладают высокой коррозионной устойчивостью в водяном паре в широком интервале рабочих температур и при высоких давлениях. [c.85]


    Межкристаллитной коррозии в среде газов, содержащих серу, подвержены стали аустенитного класса с содержанием 8—20% никеля. Никель образует с серой химическое соединение (сульфид), которое в свою очередь образует с никелем легкоплавкую эвтектику никель—сульфид с температурой плавления 624° С. Поэтому следует избегать применения хромоникелевых сталей при высоких температурах в среде газов, содержащих серу. [c.70]

    Аппараты, изготовленные из высоколегированных хромоникелевых аустенитных сталей (08Х18Н10Т и др.), необходимо подвергать стабилизирующему отжигу, если они предназначены для работы в средах, вызывающих коррозионное растрескивание, а также при температурах выше 350° С в средах, вызывающих межкристаллитную коррозию. [c.32]

Рис. 311. Зависимость межкристаллитной коррозии хромоникелевых сталей от сооткош ения между температурой и аременем предшествующего нй грева Рис. 311. Зависимость <a href="/info/1838975">межкристаллитной коррозии хромоникелевых сталей</a> от сооткош ения <a href="/info/1729443">между температурой</a> и аременем предшествующего нй грева
    Хотя характер термообработки, который вызывает склонность к межкристаллитной коррозии высокохромистых и хромоникелевых сталей типа Х18Н9, различен, что обусловлено различием скоростей процессов диффузии в твердых а- и у-растворах (скорость диффузии в а-фазе больше), процессы, приводящие к появлению этой склонности у сталей обоих типов, почти идентичны. [c.424]

    По вопросу о допустимом предеотыюм содержании углерода в хромоникелевых сталях, при котором склонность к межкристаллитной коррозии не появляется, существовала точка. фсния, что оно ие должно превышать 0,02%- В последние годы на основании экспериментальных работ Бейна, принято считать, что максимальное содержание углерода, не вызывающее появления у стали склонности к межкристаллитной коррозии, равно 0,007%, [c.165]

    Одним из наиболее распространенн1Мх растворов для испытания на склонность нержавеющих сталей к межкристаллитной коррозии является раствор серпой кислоты н медного купороса, в котором образцы кипятят. Склонность к межкристаллитной коррозии обнаруживается по растрескиванию образцов (после кипячения) при их загибе на угол, равный 90°. Опыт показывает, что этот метод пригоден для выявления склонности к мел<крн-сталлитной коррозии хромистых, ферритны.х, ] артенситных и хромоникелевых сталей аустенитного, аустенито-ферритного и аустенито-мартенситного классов, так как этот раствор выявляет межкристаллитную коррозию при выпадении карбидной фазы. Этот раствор не выявляет межкристаллитную коррозию в том случае, когда межкристаллитная коррозия является следствием выделения ст-фазы. В последнем случае значительно лучше выявляет межкристаллитную коррозию, связанную с выпадением ст-фазы, кипящий 65%-ный раствор азотной кислоты. Оценка склонности металла к межкристаллитной коррозии в этом растворе производится массовым методом, чем он прщщи- [c.344]

    Хромоникелевые аустенитные стали при температурах выше 400 °С склонны к межкристаллитной коррозии, суть которой заключается в выпадении по границам зерен карбида хрома. Обеднение границ зерен хромом приводит к потере коррозионной стойкости стали и к ухудшению ее механических свойств. Особенно сильно подвержена межкристаллитной коррозии сталь марки 1Х18Н9Т, широко применяемая для изготовления аппаратов нефтеперерабатывающих заводов, поэтому если аппараты работают при высоких температурах, то сталь необходимо подвергнуть стабилизирующему отжигу. Сопротивление стали межкристаллитной коррозии еще больше увеличивается при добавлении титана. [c.20]

    По внешнему виду металл, пораженный межкристаллитной коррозией, не обнаруживает заметных изменений, но теряет металлический звук, а деформация на изгиб приводит к образованию трещин. Поэтому анситиз образцов, вырезаемых для проверки, производится с помощью испытания хромоникелевых сплавов на изгиб для обнаружения признаков межкристаллитной коррозии. [c.170]

    Необходимость длительной и безотказной работы различных деталей и изделий в контакте с агрессивной средой предъявляет высокие требования к коррозионной стойкости и долговечности материалов, из которых они изготовлены. В качестве коррозионностойких сталей во многих отраслях промышленности находят применение хромистые и хромоникелевые стали, содержащие не менее 12...13 % хрома. Однако эти стали во многих случаях могут быть подвержены одному из наиболее опасных видов коррозионного поражения - меж -фисталлитной коррозии (МКК), нередко являющейся причиной отказов оборудования и возникновения аварийных ситуаций. Межкристаллитная коррозия локализуется по границам зерен без видимых вооруженным глазом изменений внешнего вида, формы и размеров изделий. Сцепление между зер. ослабевает как в поверхностном слое, так и по всему сечению изделия, что может привести к практически полной потере функциональной способности изделия и механической прочности. [c.83]

    Широкое применение получили стали системы Ре — Сг — N1 без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- заванию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость. [c.39]

    Существует два вида межкристаллитной коррозии. Первый вид характерен для восстановительных и слабо окислительных сред и связан в основном с выделением карбидов хрома. На. практике этот вид коррозии встречается у сталей, содерл<ащих достаточное количество углерода, а также у сталей, подвергающихся нагреванию при температурах 450—800°С. Второй вид межкристаллитной коррозии наблюдается в сильно окислительных средах, например в кипящей концентрированной азотной кислоте, содержащей анионы СггО ", МпО , УО , N0 или катионы 06 + Ре +. Последний вид коррозии не связан с выделением карбидов хрома и протекает почти во всех высоколегированных сталях, даже когда они содержат незначительное количество углерода и прощли правильную термообработку. Такая коррозия часто наблюдается даже в кипящей 65%-ной азотной кислоте при наличии фаз с высоким содержанием хрома. При более низких концентрациях азотной кислоты заметного снижения коррозионной стойкости хромоникелевых сталей не наблюдается и даже при температуре кипения они обладают хорошей устойчивостью. [c.94]

    Коррозионностойкие стали подразделяются на хромистые, хромоникелевые, хромомарганцевые и хромомарганцевоникелевые стали. По структуре коррозионностойкие стали могут быть аустенитно-го, ферритного, аустенито-ферритного, мартенситного и мартенсито-ферритного классов. Наиболее опасными видами коррозии коррозионностойких сталей являются питтинговая, язвенная и щелевая коррозии в кислых и в нейтральных растворах хлоридов, межкристаллитная коррозия, коррозионное растрескивание в горячих растворах хлоридов. [c.69]

    Контроль ЁЛИЧИНЫ Зернй в аустенитных х омоникелевых нержавеющих сталях. Механические свойства нержавеющих хромоникелевых аустенитных сталей типа 18-8, а также их склонность к межкристаллитной коррозии в значительной мере зависят от величины зерна металла. Лучшие прочность и пластичность хромоникелевая сталь имеет при мелкозернистой аустенитной структуре. Крупнозернистый металл более склонен к межкристаллитной коррозии в агрессивной среде. Поэтому в деталях ответственного назначения из аустенитной нержавеющей стали очень важно контролировать величину зерна. [c.75]

    Кроме дефектоскопии магнитные и электромагнитные методы применяют также для фазового анализа нержавеющих сталей. Количественное определение б-феррита в нержавеющих сталях имеет большое практическое значение. Например, стойкость сварных швов аустенитных сталей против образования кристаллизационных (горячих) трещин находится в прямой зависимости от фазового состава металла шва. В многочисленных работах советских исследователей показано, что удовлетворительная тре-щиноустойчивость металла аустенитных хромоникелевых швов с наибольшей эффективностью достигается путем обеспечения 2—5% ферритной фазы в его структуре. Существенное влияние оказывает б-феррит на развитие общей и межкристаллитной коррозии. В работах [104, 109] показано также значительное влияние ферритной фазы на затухание и скорость распространения УЗК в сварных швах нержавеющих сталей, а следовательно, и на де-фектоскопичность. [c.141]

    Таким образом, легированные хромом перлитные и хромистые фер-ритно-мартенситовые стали в условиях сжигания прибалтийских сланцев имеют низкую коррозионную стойкость из-за большой чувствительности хрома К щелочным хлоридам. Несколько более окалиностойкими являются аустенитные хромоникелевые стали. Однако при высоких содержаниях никеля возникает повышенная опасность межкристаллитной коррозии. [c.266]


Библиография для Хромоникелевые межкристаллитная: [c.117]   
Смотреть страницы где упоминается термин Хромоникелевые межкристаллитная: [c.15]    [c.333]    [c.422]    [c.427]    [c.460]    [c.163]    [c.227]    [c.31]    [c.82]    [c.71]    [c.5]    [c.363]    [c.37]    [c.46]    [c.278]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.9 , c.31 , c.32 , c.37 , c.38 , c.42 , c.50 , c.95 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Веденеева, Я. Д. Томашов. Влияние деформации на межкристаллитное разрушение хромоникелевой стали

Влияние основных легирующих и примесных элементов на стойкость к межкристаллитной коррозии аустенитных хромоникелевых сталей

Межкристаллитная коррозия хромоникелевых сталей

Пути повышения стойкости хромоникелевых сталей к межкристаллитной коррозии

Ультразвуковой контроль межкристаллитной коррозии хромоникелевых сталей

Хромоникелевые стали межкристаллитная коррозия



© 2025 chem21.info Реклама на сайте