Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ионов

    Величина г() в уравнении (3.47) представляет собой среднее значе-1 ие нотенциала в точке г, создаваемой ионной атмосферой и центральным ионом. Для реальных растЕоров специфическим является потенциал ионной атмосферы который находят по правилу суперпозиции потенциалов как разность п [c.87]

    Для вычисления энергии взаимодействия необходимо определить потенциал ионной атмосферы в точке нахождения центрального иона, т. е. найти предел )1а при г-н О. Это можно сделать, используя вновь тот же прием, т. е. разлагая показательную функцию в ряд л пренебрегая высшими членами разложения [c.87]


    Статистическая теория электролитов (теории Дебая и Гюккеля). Потенциал ионной атмосферы [c.403]

    В кратком изложении основ статистической (электростатической) теории электролитов будет сначала дан вывод формулы для электрического потенциала ионной атмосферы, а затем рассмотрены вытекающие из этой формулы уравнения для средних коэффициентов активности в электролитах. [c.404]

    Нашей задачей является найти с помощью уравнений электростатики величины ip и г]) и затем определить потенциал ионной атмосферы i a. [c.404]

    Упростим выражение (XVI, 31) для потенциала ионной атмосферы г 3а, разложив показательную функцию в ряд и ограничившись одним членом разложения [c.409]

    Таким образом, значение х также увеличивается с возрастанием а. Теперь, используя выражение (XVI, 37), выразим величину потенциала ионной атмосферы при переменном е  [c.409]

    Как видно из электростатической теории электролитов, зависимость lgY от корня квадратного из ионной силы является линейной. Это было подтверждено многочисленными экспериментальными исследованиями электролитов с очень малыми концентрациями. Из всего сказанного следует, что уравнение (XVI, 48) справедливо лишь для сильно разбавленных растворов, так как при выводе уравнения для потенциала ионной атмосферы были сделаны некоторые существенные математические упрощения и физические предположения. Уравнение (XVI, 48) называется предельным уравнением Дебая—Гюккеля для Коэффициент А зависит от температуры (непосредственно и через диэлектрическую проницаемость О). Проверка [c.413]

    Положения, относящиеся к диффузии электролитов, не вполне бесспорны, так как обычно принимается, что диффузия иона происходит под воздействием силы, действующей на него и равной градиенту химического потенциала иона. В то же время, как отмечалось выше, диффузия является результатом беспорядочных перемещений, а не направленного движения под действием какой-то силы на диффундирующие молекулы. Поэтому сомнительно рассматривать градиент химического потенциала в качестве силы, движущей ионы через раствор. Однако такими представлениями неизменно пользуются при изучении диффузии электролитов они приводят [c.26]

    Химический потенциал ионов данного заряда определяют по уравнению [c.434]

    Создать раствор, содержащий ионы только одного знака, невозможно, так же как и нельзя добавлять ионы только одного знака (закон электронейтральности раствора). Однако это не лишает смысла понятия химического потенциала ионов -го знака. Термодинамический эффект, производимый электролитом в растворе, можно рассматривать как сумму термодинамических эффектов его ионов. [c.434]


    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]

    Вершина параболы соответствует точке нулевого заряда. В этой точке поверхностное натяжение не зависит от потенциала, так как производная с а/ /ф равна нулю, т. е. поверхностный слой имеет нулевой заряд, что означает отсутствие двойного электрического слоя. Потенциал же поверхности в этой точке ие равен нулю. Например, можно подобрать такой раствор, в котором химический потенциал иона будет равен его химическому потенциалу на опу-]ценной в раствор металлической пластинке. В этом случае перераспределения ионов между фазами не будет и двойной электрический слой не возникает. Такой раствор называется нулевым раствором, а потенциал на пластинке в нем — потенциалом нулевого заряда. Разность потенциалов двух электродов (веществ) в нулевом [c.49]

    Подобно тому как-диссоциация молекул различных веществ требует затраты различных количеств энергии, ионизация атомов различных веществ также нуждается в затратах разных количеств энергии. Потенциал иони- [c.227]

    Химический потенциал ионов в растворе связан с их активностью выражением [c.104]

    Реакцию можно ускорить также вначале, если прибавить к раствору немного соли двухвалентного марганца. В соответствии с уравнением реакции (5) ионы дву> ва-лентного марганца должны в некоторой степени сдвигать равновесие влево. Это не имеет заметного отрицательного влияния из-за высокого окислительного потенциала ионов перманганата при переходе в двухвалентный марганец в кислой среде. [c.379]

    Окислительный потенциал ионов бихромата очень сильно зависит от кислотности раствора. В соответствии с уравнением (1) можно написать  [c.391]

    Очевидно, что, несмотря на равномерное распределение ионов по объему раствора, вблизи положительных зарядов плотность отрицательных зарядов выше, чем в среднем по раствору, и, аналогично, вблизи отрицательных зарядов плотность положительных зарядов больше. Это означает, что потенциал электрического поля иона в растворе конечной концентрации отличается от потенциала иона в бесконечно разбавленном растворе и зависит от общей концентрации электролита. Поэтому наша первая задача заключается в вычислении электростатического потенциала отдельного иона в зависимости от расстояния до его центра. Хотя распределение зарядов вокруг любого иона в каждый момент времени не является сферическим, тем не менее если усреднить эти распределения по всем ионам одного типа в растворе, получится сферическая картина. Для нахождения усредненного потенциала необходимо решить сферически симметричное уравнение Пуассона  [c.230]

    Зная электростатический потенциал ионной атмосферы, можно рассчитать потенциал, создаваемый ионной атмосферой в центре координат, т. е. в месте расположения центрального иона. При / -> О величина 4 д(0) равна [c.235]

    Отсюда видно, что потенциал ионной атмосферы зависит от величины заряда центрального иона. В идеальном растворе, в котором электростатическое взаимодействие растворенных ионов отсутствует, ионной атмосферы нет и нет потенциала в месте расположения центрального иона. Отсюда следует, что отличие реального раствора от идеального заключается во взаимодействии ионной атмосферы и центрального иона. Энергия этого взаимодействия и будет определять коэффициент активности иона. Для расчета энергии этого взаимодействия необходимо рассмотреть процесс заряжения центрального иона от нуля до Ze с одновременным заряжением ионной атмосферы. В процессе заряжения этот потенциал изменяется если заряд центрального иона равен промежуточному значению д, то потенциал ионной атмосферы в центре координат будет составлять величину [c.235]


    Потенциал ионной атмосферы определяется точно так же, как и раньше  [c.237]

    Подставляя в (12.26) выражение (12.25) для потенциала ионной атмосферы на фанице ион—раствор, получаем [c.237]

    Ионы. серебра осаждаются на электроде с большей скоростью из более концентрированного раствора азотнокислого серебра (химичеокий потенциал ионов серебра имеет более высокое значение в более концентрированном растворе Д ЫОз с активностью С2 и электрод в таком растворе заряжается положительно). Э. д. с. ячейки можно выразить через активности серебра  [c.316]

    В растворе электролита вблизи каждого иона сосредоточивается больше ионов противоположного знака, чем ионов одноименного. Образованию такой ионной атмосферы благоприятствуют более высокий потенциал иона 1 з и увеличение его заряда размыванию (разрушению) ионной атмосферы благоприятствует увеличение температуры. [c.331]

    Взяв за основу электростатическую модель строения вещества, теория предложила количественный метод оценки силы кислоты и основания как функции ионного потенциала. Если в каком-либо соединении, в состав которого входит водород, центральный ион имеет положительный заряд, то кислотность увеличивается по мере повышения заряда и уменьшения радиуса иона. При отрицательном заряде иона с увеличением потенциала иона кислотность снижается, а основность увеличивается. В зависимости от того, потенциал какого иона преобладает в амфотерном соединении, вещество обладает либо кислотными, либо основными свойствами. [c.403]

    Взаимодействие с водой. Окислителем в воде формально является ион водорода. Поэтому принципиально окисляться водой могут те металлы, стандартные электродные потенциалы которых ниже потенциала ионов водорода в воде. Последний зависит от pH среды  [c.330]

    В выражении для химического потенциала иона [c.204]

    Для скачка потенциала на границе металл — раствор соли химический потенциал иона в металле ( ii") можно считать постоянным  [c.216]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    При соприкосновении проводника первого рода с электролитом на границе электрод — раствор возникает двойной электрический слой. В качестве примера рассмотрим медный электрод, погруженный в раствор Си304. Химический потенциал ионов меди в металле при данной температуре можно считать постоянным, тогда как химический потенциал ионов меди в растворе зависит от концентрации соли. Таким образом, в общем случае эти химические потенциалы неодинаковы. Пусть концентрация СиЗО такова, что химический потенциал ионов меди в растворе больше химического потенциала этих ионов в металле. Тогда при погружении металла в раствор часть ионов из раствора дегидратируется и перейдет на металл, создав на нем положительный заряд. Этот заряд будет препятствовать дальнейшему переходу ионов Сц2+ из раствора на металл и приведет к образованию вблизи электрода слоя притянутых к нему анионов 504 (рис. XX, 1а). Установится так называемое электрохимическое равновесие, при котором химические потенциалы ионов в металле и в растворе будут отличаться на величину разности потенциалов образующегося при этом двойного электрического слоя  [c.531]

    Пусть концентрация Са504 настолько мала, что химический потенциал ионов меди в растворе меньше, чем химический потенциал этих ионов в металле. Б этом случае при погружении [c.531]

    Здесь — химический потенциал иона is растиорс п стандартном состоянии эта величина прн заданно температуре постоянна. Таким образом [c.545]

    Формула Название / Потенциал иони лции, II эз I [c.330]

    Иногда протекание нежелательных побочлых реакций можно уменьшить применением так называемых деполяризаторов. Окислители относятся к катодным деполяризаторам, а восстановители— к анодным. Примером катодных деполяризаторов являются ионы КОз , которые могут подавлять реакцию выделения Нг на катоде. Выделение кислорода на аноде можно уменьшить, например применяя гидразин в качестве деполяризатора. Значение окислительно-восстановительного потенциала деполяризатора должно достигаться раньше, чем окислительно-восстановительного потенциала иона, разряжение которого хотят предотвратить, но позже чем выделяемого иона (почему ). [c.262]

    В принципе можно выбрать такую силу тока в электролитической цепи, чтобы она составляла менее 1 % величины диффузионного предельного тока. В этом случае мешающие реакции начинают протекать только после того, как прореагировало 99% определяемого вещества. Попрешность составляет, таким образом, менее —1%. Но проведение анализа при небольшой силе тока требует больших затрат времени. Поэтому обычно поступают по-другому в анализируемый раствор вво-.дят довольно большую концентрацию вспомогательного ре-.агента, окислительно-восстановительный потенциал которого немного больше окислительно-восстановительного потенциала определяемого иона. К началу электролиза определяемый ион опять восстанавливается или окисляется. В соответствии с уменьшением концентрации определяемого иона у поверхности электродов электродный потенциал снова возрастает, но только -ДО тех пор, пока его значение ие станет равным значению потенциала иона вспомогательного реагента. После этого окисляется или восстанавливается реагент. Поскольку его концентрация намного больше концентрации определяемого иона, обеспечивается дополнительная подача вещества путем диффузии к поверхности электродов. Электродные потенциалы остаются постоянными (не происходит разложения воды 100%-ный выход ло току), остается постояиным значение Яг, а следовательно, и г. Диффундирующий от электродов вспомогательный реагент, являющийся окислителем или восстановителем, реагирует в растворителе с определяемым ионом, и, таким образом, действует только как посредник. [c.274]

    В уравнениях (VH,23) и (VII, 24) числитель экспоненты представляет общий адсорбционный потенциал ионов, т. е. работу переноса одного М0ля ионов из объема раствора на поверхность адсорбента. Эта сложная величина, представляющая алгебраическую сумму специфического адсорбционного потенциала 0+ или 6- и электрического адсорбционного потенциала 2фа. Для положительных ионов общий адсорбционный потенциал, очевидно, будет 0+-1-Я гф4, для отрицательных он равен 0 —/ гфй. [c.187]

    Рассматривая влияние индифферентных электролитов, мы принимали, что на электрокинетический потенциал оказывают влияние иоиы, заряд которых протй-воподожен по знаку заряду коллоидной частицы и одинаков с зарядом противоионов. Возникает вопрос, могут ли влиять на -потенциал ионы вводимого индифферентного электролита, заряженные одноименно с коллоидной частицей (так называемые сопутствующие или побочные ионы). На этот вопрос исследователя отвечают по-разному, но во всяком случае, если эти ионы и влияют на электрокинетический потенциал, то незначительно. К этому вопросу мы возвратимся "в гл. IX. [c.193]

    При титровании как КОН, так и ВаСЬ получаются в общем совгшдающие результаты. Ввиду большого адсорбционного потенциала ионов бария из мицеллы вытесняются все ионы H находящиеся в адсорбционном слое. [c.221]


Смотреть страницы где упоминается термин Потенциал ионов: [c.414]    [c.599]    [c.8]    [c.252]    [c.45]    [c.105]    [c.106]    [c.261]    [c.142]   
Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.325 , c.327 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.325 , c.327 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.325 , c.327 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.325 , c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный потенциал



© 2025 chem21.info Реклама на сайте