Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещество хитин

    Полученный таким образом хитин представляет собой легкую массу, слабо окрашенную в розоватый цвет красящими веществами панцирных оболочек содержание золы в хитине менее 1 %. Для удаления красящих веществ хитин экстрагируют эфиром в аппарате Сокслета или отбеливают разбавленным раствором марганцевокислого калия, а потом промывают раствором бисульфита натрия. [c.89]


    Насекомые не имеют внутреннего костного скелета. Их тело снаружи покрыто плотным кожистым покровом — кутикулой, содержащей стойкое вещество — хитин. Кутикула выполняет роль наружного скелета, к которому прикреплены внутренние органы. Кожистый хитиновый покров не пропускает воду. Он [c.6]

    Тело насекомых покрыто плотным веществом — хитином и резко разделено на голову, грудь и брюшко. На голове, образованной из нескольких слившихся между собой сегментов, расположены ротовой аппарат, органы зрения, обоняния и осязания. В зависимости от используемой пищи ротовой аппарат насекомых подразделяется на грызущий и сосущий. [c.84]

    Ранее нами было обнаружено, что при пропускании раствора гиалуронидазы через колонку с хитином происходит сорбция балластных веществ и, возможно, ингибиторов фермента, что приводит к увеличению удельной активности фермента. Использование обнаруженного нами факта при разработке технологии очистки гиалуронидазы требует дальнейшего изучения этого процесса и, в частности, определения емкости сорбента. Для этого на колонки с одинаковым объемом сорбента наносили различные количества фермента. Результаты экспериментов сведены в таблице. [c.95]

    Химический состав оболочки неоднороден и резко отличается от оболочек высших растений. Если оболочка у растений состоит из целлюлозы, то в состав оболочки бактерий входят безазотистые и азотистые соединения. Из безазотистых веществ встречаются гемицеллюлозы, специфические полисахариды и липоиды (группа органических жироподобных соединений), из азотистых — хитин (органическое вещество типа полисахаридов, состоящее из ацети-лированного глюкозамина). [c.247]

    Дрожжи и плесени отличаются от простейших наличием толстой твердой клеточной оболочки (у дрожжей оболочка состоит из целлюлозы, а у плесеней — из хитина или родственных ему веществ), способом питания, отсутствием подвижности, вегетативным спосо- [c.272]

    Миксобактерии очень активно разрушают отмершие органические вещества — клетчатку и хитин, а также другие самые разнообразные вещества животного и растительного происхождения, [c.282]

    Функциональное предназначение полисахаридов в живой клетке определяет в значительной степени их структурные особенности. В зависимости от выполняемой ими роли полисахариды можно подразделить на три группы. Структурные полисахариды, такие как целлюлоза или кси-лап в клеточных стенках растений, хитин в наружном скелете членистоногих и насекомых, образуют протяженные цепи, которые, в свою очередь, укладываются в прочные волокна или пластины и служат своего рода каркасом в живом организме. Резервные полисахариды, как амилоза (составная часть растительного крахмала), гликоген (животный крахмал), глюкоманнаны (резервное вещество ряда растений), часто характеризуются разветвленной структурой, где длина наружных и внутренних ветвей варьируется в довольно широких пределах, или состоят из набора линейных цепей с различной степенью полимеризации. Полисахариды данной группы важны для энергетики организма. Наконец, каррагинан, мукополисахариды соединительной ткани и другие гелеобразующие полисахариды часто состоят пз линейных цепей, которые, образуя достаточно большие ассоциаты и удерживая воду, превращаются в плотные гели. [c.17]


    Различным природным высокомолекулярным соединениям давались названия обычно без какой-либо определенной системы. Так, многие природные соединения целлюлоза, крахмал, лигнин, белок, каучук, гуттаперча, казеин, шелк, инулин, хитин и другие — названы случайно. Их названия не отражают строения и свойств вещества. [c.166]

    Выделенный хитин представляет собой жесткое волокнистое вещество от белой окраски до желто-коричневой. Хитин не растворим в воде, в органических растворителях, мало набухает в щелочных растворах при комнатной температуре. Его можно [c.170]

    Более широко используются в медицине, биотехнологии, косметике хитин и его производные. Несмотря на аналогию в строении, хитин отличается от целлюлозы по ряду свойств. Реакционноспособная аминогруппа во многом определяет свойства этого биополимера. В медицине хитин и его производные используются как вспомогательные вещества в технологии производства лекарственных средств, для создания полимерных изделий медицинского назначения, в качестве биологически активных веществ и как стоматологический материал. [c.391]

    Важнейшие полисахариды — крахмал (две формы амилоза п амилопектин) и целлюлоза в растениях, хитин у членистоногих, гликоген в организмах животных. Целлюлоза и хитин служат веществами, образующими скелет, опорные, защитные структуры. Крахмал и гликоген являются веществами, в которых запасается углерод и химическая энергия. На рис. 2.13 изображено звено амилозы. Цепи амилопектина, в отличие от амилозы, разветвлены, равно как и цепи гликогена. Полисахариды не являются [c.46]

    Полисахариды выполняют две основные функции. Крахмал, существующий в двух формах — амилозы и амилопектина, и гликоген являются источниками моно- и дисахаридов. Целлюлоза (в растениях), хитин (у членистоногих) служат веществами, образующими скелет, опорные, защитные структуры. [c.91]

    Фунгициды. Известно, что споры грибов весьма устойчивы к химическому разрушению фунгицидами. Кроме того, многие фунгициды токсичны и для са.мих растений. Клеточные стенки многих патогенных грибков содержат достаточно стабильное полимерное вещество — хитин, который найден также в больших количествах в панцире крабов и раков. Даже концентрированные кислоты и щелочи оказывают лишь слабое воздействие на хитин однако имеется фермент, хитиназа, который способен действовать на хитин. Если хитин спор грибов обработать этим ферментом, их стенки быстро разрушаются, содержимое споры выливается и она гибнет (фпг. 100). (Хитиназа необычна тем, что она представляет собой не белок, а полисахаррщ.) Таким образом, этот фермент может быть с успехом использован в качестве фунгицида. Его преимущество перед другими фунгицидами заключается в том, что, во-первых, он способен разрушать хитин, чего не делают другие фунгициды, а во-вторых, он не токсичен для растений, животных и человека. [c.358]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    По данным В.Л. Мехтиевой, общий химический состав организмов, в особенности планктонных, в значительной степени обусловливается составом их оболочек. В оболочках одноклеточных планктонных организмов наиболее распространены различные полисахариды. Древнейшие представители жизни - микроскопические морские водоросли, а также морские красные и бурые водоросли не содержат лигнина, тогда как у зеленых водорослей он имеется. Для филогенетически наиболее молодых форм растений характерно наличие клетчатки. В составе покровных тканей беспозвоночных, помимо минеральных составляющих, содержатся хитин и белковое вещество. [c.190]

    В растениях молекула глюкозы полимеризуется в цепи, состоящие из тысяч мономерных единиц, в результате чего получается целлюлоза, а если полимеризация происходит несколько иным образом, получается крахмал. Близкородственный к глюкозе К-ацетилглюкозамин в результате полимеризации образует хитин - вещество, из которого состоит роговица насекомых. Другое близкое по составу вещество, Ы-ацетилмурановая кислота, сополимеризуется в другую последовательность цепей, из которых построены стенки бактериальных клеток. Глюкоза разлагается в несколько стадий, выделяя энергию, которая требуется живому организму. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал - гликоген, который при необходимости снова превращается в глюкозу. Глюкоза, целлюлоза, крахмал и гликоген относятся к углеводам. [c.308]


    Хитин имеет характер сложного полисахарида. Он распространен в природе как роговое вещество у артроподов, моллюсков, плеченогих и Вгуогоеп, встречается у червей и бактерий. В растительном мире [c.458]

    При жестком кислотном гидролизе хитин полностью распадается на глюкозамин и уксусную кислоту прн частичном гидролизе могут быть выделены в качестве промежуточных продуктов ди-, три-, тетра-и пентаглюкозамины, а также М-ацетилглюкозамин, из чего следует, что содержащаяся в хитине ацетильная группа связана с атомом азота. Иначе протекает расш,епление хитина крепкими щелочами оно приводит к уксусной кислоте и хитозану — веществу, еще близкому к хитину, но обладающему слабсосновными свойствами, что проявляется в способности образовывать кристаллические соли. Азотная кислота превращает его полностью в хитозу. [c.459]

    Нами было обнаружено, что гиалуронидаза не сорбируется на хитине, в то же время хитин сорбирует балластные вещества из препарата, ЧТО приводит к увеличению удельной активности фермента. Перед использованием хитин отмывали 0.1 М уксусной кислотой (pH 2.9), затем физиологическим раствором (ФР). Активность гиалу- [c.96]

    Все представители животного и растительного мира ириниматот деятельное участие в очистке сточных вод. Бактерии минерализуют органические вещества, простейшие (инфузории, корненожки) питаются бактериями, а водоросли продуцируют кислород и фитонциды (вещества, губительные для микроорганизмов). Черви прорывают ходы между частицами шлака, разрыхляют биологическую пленку и тем самым облегчают доступ в нее кислороду. Кроме того, черви, питаясь органическими веществами, переваривают и разлагают ряд стойких соединений — хитин, клетчатку. [c.302]

    Бактерии минерализуют органическое вещество, водоросли продуцируют кислород, а простейшие уничтожают избыточные количества бактерий. Наблюдения исследователей показали, что уничтожение старых бактериальных клеток создает условия для роста новых более биохимически активных особей. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют проникновению воздуха в ее заиленные yч l тки. Кроме того, онн перерабатывают трудно расщепляемые органические вещества (целлюлозу, хитин, ке])атнн). Следовательно, в почве, помимо бактерий, много простейших и беспозвоночных участвует в минерализации органического вещества, вносимого сточной жидкостью. [c.312]

    Впервые в высокоэнергонапряженных мельницах осуществлен синтез водорастворимых эфиров хитина и хитозана. Впервые показана возможность использования методов механической активации для получения композиций пироксикама, обладающих высокой скоростью растворения и растворимостью лекарственного вещества. [c.43]

    В литературе не упоминается о случаях частого актиномицет-ного разрушения материалов. Актиномицеты участвуют в процессе биоповреждений наряду с грибами и бактериями. В первом случае их трудно идентифицировать. Актиномицеты, относящиеся к порядку My oba teriales (не образующие настоящего мицелия), способны окислять сложные углеводороды нефти (парафин и др.) и представляют некоторую опасность для консервацйонных составов и топлив [28]. Многие представители актиномицетов разрушают целлюлозу, хитин и другие вещества. В продуктах их жизнедеятельности имеются соединения, токсичные для бактерий и других микроорганизмов, но безопасные для теплокровных. Больше половины веществ, известных в медицине как антибиотики, получены из актиномицетов (стрептомицин, тетрациклин, хлоромицетин, антиканцерогены и др.). Поэтому некоторые виды актиномицетов могут рассматриваться как перспективные при разработке биохимических, а возможно, и экологических методов защиты от биоповреждений, вызываемых бактериями. [c.11]

    ХИТИН. Ракообразные имеют прочный твердый наружный скелет,, состоящий в основном из хитина — полимера 2-ацетамидо-2-дезокси-в-глю-козы. По мере роста ракообразные периодически сбрасывают его во время липьки, так как в отличие от тканей, увеличивающихся в результате клеточного деления, жесткий полимер сохраняет постоянные размеры. Хитин не только выполняет опорные функции, но и играет роль кожицы, регулирующей поступление или потерю воды. Интересно, что хитин ракообразных отличается от хитина насекомых. В первом случае этот полимер пропитан карбонатом кальция и другими солями, во втором — смесью веществ под общим названием насекомого воска . И тут и там происходит заполнение пор [c.462]

    В 2-литровый стакан помещают 200 г очищенных, высушенных и растертых в порошок панцырей крабов и затем к этому порошку медленно прибавляют избыток разбавленной (около 6 н.) продажной соляной кислоты до тех пор, пока реакция не прекратится. При прибавлении кислоты масса сильно пенится, поэтому необходимо остерегаться потерь вещества и следить за тем, чтобы пена не переливалась через края стакана. После того как интенсивность реакции уменьшится, реакционную смесь оставляют стоять в течение4—6 час., чтобы обеспечить полное удаление углекислого кальция. Затем остаток отфильтровывают, промьшают водой до нейтральной реакции на лакмус и сушат в сушильном шкафу при 50—60°. Выход сухого хитина обычно составляет около 70 г, однако в случае использования некоторых образцов панцырей крабов он падает до 40 3. [c.140]

    Членистоногие (Arthropoda) насчитывают 10 видов, т. е. составляют около 80% всех известных ныне животных. К этим существам, имеющим членистый наружный скелет из хитина или других веществ, относятся мечехвосты, паукообразные (скорпионы, пауки, клещи), ракообразные, многоножки (губоногие и двупарноногие) и насекомые. Ряд важных биохимических проблем в этой области возник с изобретением и использованием инсектицидов. Большой интерес представляет изучение процесса метаморфоза при развитии многих членистоногих [43]. [c.53]

    В настоящее время все большее внимание исследователей привлекают природные соединения - биополимеры, обладающие собственной физиологической активностью. К ним относятся такие чрезвычайно распространенные в природе вещества, как полисахарид целлюлоза и полиаминосахарид хитин. Одним из факторов, контролирующих механизм их биологической активности, является определяемая особенностями надмолекулярной структуры доступность реакционных центров для сольватирующих молекул растворителей. В этой связи проведенное в главе обобщение современных данных по строению кристаллических целлюлозы, хитина и хитозана (производное хитина) и анализ проблем растворения и сольватации этих веществ в различных растворителях являются актуальными и полезными для дальнейшего развития физикохимии углеводов и других сахаров. [c.7]

    Хитии и хитозан можно рассматривать как производные целлюлозы, у которых гидроксильные группы при втором атоме углерода заменены на ацетамидные и аминные соответственно. Хитин -структурный аналог целлюлозы, он также широко распространен в природе, так как является главной составляющей частью покровных тканей членистоногих. Источники его получения самые разные из морских ракообразных, насекомых, паукообразных и оболочек клеток некоторых грибов и плесени [95]. Морские ракообразные (раки, крабы, кальмары, черепахи, криль, креветки) дают ежегодно миллионы тонн хитина. Количество этого вещества в панцирях ракообразных достигает 10-25%, в сухом мицелии грибов - 15-45%. [c.386]

    М-сульфат хитозана используется для получения препаратов коагулирующего действия, практически не уступающих гепарину. Использование производных хитина в качестве гемостатических препаратов связано с тем, что хитин образует коагулюм, предотвращающий кровотечение без образования кровяного сгустка. В целях быстрого кровоостановления и противотромботического ускоряющего заживления ран вещества применяют хитин, мономер хитина, хитозан и другие производные. Лекарственная форма препарата может быть различной присьшки, гели, мази, губки, повязки, аэрозоли. [c.392]

    Углеводы в живом веществе представлены как относительно простыми сахарами, так и полимерами. В почвах, торфах и субаквальных осадках встречаются как моносахариды, так и олигосахариды (раффиноза, сахароза, мальтоза). В са-пропелях углеводы составляют около 40 % всего ОВ. В древних отложениях почти нет свободных сахаров, но они присутствуют там в составе полисахаридов. К числу важнейших полисахари дов относятся целлюлоза, а также аминополисахариды, напри мер хитин, важнейший компонент скелета беспозвоночных жи вотных. Остатки хитина в виде аминосахаров встречаются в древних породах вплоть до силурийских граптолитовых слан цев. Содержание аминосахаров в современных отложениях до стигает 1 мг/л, а в древних —до 0,1 мг/л [Карцев А. А., 1978] [c.212]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Массовое содержание биомассы в ферментаторе при переработке разбавленного сульфитного щелока составляет по прессованным дрожжам 30 г/л, т. е. всего 0,75 % сухих веществ. В то же время влажность товарного продукта равна 10 % Для достижения этого из 1 м сульфитно-дрожжевой бражки должно быть удалено 0,99 м влаги. Первой операцией по обезвоживанию является флотация дрожжей, повышающая концентрацию биомассы вЗ—4 раза. Флотируемость различных культур дрожжей не равнозначна и определяется массовым соотношением в клетке полисахаридов и белка. При отношении полисахаридов к белку менее 40 % дрожжи не флотируются, в зоне этого отношения 40—60 % имеет место нестабильная флотация, а при увеличении отношения сверх 60%—стабильная полная флотируемость дрожжей. Ответственным за флотацию дрожжей является присутствующий в оболочке клетки среди других углеводов азотсодержащий полисахарид хитин, обусловливающий ее лиофобилизацию. Дрожжи, выращенные при недостатке в субстрате ионов кальция, особенно на аммониевых щелоках, снижают флотационную способность, вплоть до ее полной потери. [c.277]

    Белки действуют, как матрицы, только для человеческого волоса. Минимальный размер таких матриц лежит между размерами матриц рафинозы и арабиновой кислоты. Частичное ацетилирование целлюлозы (фильтровальная бумага) понижало эффективность ее как матрицы, а деацетилирование хитина — повыщало. Такие неорганические макромолекулярные продукты, как асбест, амфибол и каолин, в качестве матриц содействовали образованию лигниноподобных веществ, но в меньшей степени, чем указанные макромолекулярные соединения. [c.767]

    Углеводы — наиболее простые органические соединения, со стоящие из углерода, кислорода и водорода. Большинство угле водов имеет молекулярную формулу СжСНгО) . Подразделя ЮТСЯ углеводы на простые — моносахариды и сложные — поли сахариды. Примерами углеводов являются сахар, крахмалы целлюлозы и пектины (рис. 32). Углеводы — основной источ ник энергии клеточной, деятельности. Они строят прочные ткан1 растений (целлюлоза) и играют роль запасных питательны веществ в организмах. Простые углеводы растворимы в воде К углеводам относится также хитин, который в некоторых ра стениях и животных выполняет роль структурного материала [c.352]

    Хитин и хитозан. Хитин представляет собой линейный полимер 2-ацетил-2-ат но-2-дезокси-Д-глюкозы, содержащий 1000-3000 основных трупп. Его можно рассматривать как Ы-ацетил-Д-глюкозамин. Считается, что предшественником хитина является гликоген. Хитин является нетоксичтп,тм, биоразрушаемым продуктом, он в меньшей степени подвержен действию химичестсих веществ, чем целлюлоза. Как прави- [c.344]

    Хитин применяется в фармацевтической промышленности для осаждения и агглютинации биологических материалов. Частично разрушенный ферментацией хитин может служить матрицей для лекарственных средств пролонгированного действия, особенно в офтальмологии. Поли (аиетил-Д-глюкозамин), получаемый из хитина, применяют в качестве смазываюшего вещества для природных и синтетических хирургических материалов. Хитин вводят в таблетки для улучшения их распадае- (ости. Использование порошкообразного (40 мкм) хитина из оболочек раков приблизительно на 25% ускоряет заживление ран. [c.345]

    Полимерные вещества из морских организмов хитин и хитозен. Хим.-фармац. пр-во за рубежом. — 1984 — № 22 — 20-21 с. [c.410]

    Хитин встречается в природе как главное составное вещество панцыря ракообразных и в оболочках различных грибов. Его. молекула построена из остатков ацетилированного глюкозамина. При обработке расплаплен-Hbi.viH едкими щелочами хитин теряет ацетильные группы, связь же. между молскула.ми глюкозамина сохраняется. Таки.м образом получают высокомолекулярный. аморфный продукт расщепления — хигоз ан, который может быть превращен в кристаллизующиеся соли получение его опнса.чо ниже. [c.353]


Смотреть страницы где упоминается термин Вещество хитин: [c.415]    [c.278]    [c.12]    [c.194]    [c.29]    [c.141]    [c.187]    [c.392]    [c.460]    [c.353]    [c.354]   
Научные основы экобиотехнологии (2006) -- [ c.405 , c.467 ]




ПОИСК





Смотрите так же термины и статьи:

Хитин

Целлюлоза. Гемицеллюлозы и пектиновые вещества. Хитин и аминосахара Фенольные соединения



© 2025 chem21.info Реклама на сайте