Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ректификация аппаратура

    При определении кривых ИТК нефтяных смесей используют стандартные методы и аппаратуру. По ГОСТ 11011—64 для этих целей. рекомендуется аппарат АРН-2 с колонкой четкой ректификации диаметром 50 мм, высотой слоя проволочной насадки 1016 мм (рис. 1-4). Колонка имеет куб 2 с электрической печью 1 и конденсатор 5. Стандартом регламентируются условия перегонки скорость перегонки, остаточное давление, расход орошения и т. д., при соблюдении которых разделительная способность колонки соответствует 20 т. т. Аппарат АРН-2 обеспечивает достаточную четкость разделения нефтяных смесей, при этом интервал выкипания составляет 1—3°С. Очевидно, чем е фракционный состав отбираемых погонов, тем точнее получают истинные температуры кипения нефтяных смесей. Практически для интервала 3°С фракций получаются достаточно точные кривые истинных температур кипения. [c.20]


    Прямая схема ректификации, принятая в первоначальных схемах, как правило, не является оптимальной для разделения прямогонных бензиновых фракций, содержащих немного легких углеводородов и примерно одинаковое количество всех остальных фракций в сырье. В связи с этим для четкого выделения головной фракции, а также и последующих фракций требуются повышенные флегмовые и паровые числа и большие паровые и жидкостные нагрузки в колоннах. Запроектированная аппаратура типовой установки также не обеспечивает достаточно четкого выделения узких бензиновых фракций. Легкие углеводороды, попадая в колонну 2, резко снижают четкость ректификации, в результате чего фракция 62—105°С загрязняется (до 8—10% масс.) фракцией н.к. —62°С. [c.209]

    Таким образом, дальнейшее развитие процессов перегонки н ректификации нефтяных смесей будет идти в направлениях концентрации производства, разработки новой и совершенствования существующей технологии переработки нефти и газа, улучшения конструкции аппаратуры, применения высокоэффективных схем регулирования и использования энерготехнологических комплексов, [c.346]

    Улучшив четкость ректификации в вакуумной колонне АВТ, отбор широкого вакуумного отгона из арланской нефти (фракции 325—460 °С), пригодного в качестве сырья каталитического крекинга, можно увеличить до 16—19% на нефть. В результате вакуумной перегонки мазута на промышленной АВТ при остаточном давлении 14—30 мм рт. ст. и определенном температурном режиме можно получить отдельные вакуумные дистилляты (фракции 350— 500, 350—525 °С) в количестве 24—29% на нефть. По мере увеличения отбора верхнего продукта вакуумной колонны (вакуумного газойля из арланской нефти) его коксуемость и содержание в нем азота значительно возрастают, а содержание тяжелых металлов и серы не изменяется. Необходимо лишь выбрать технологический режим, обеспечивающий четкое погоноразделение. Следует также учесть возможность коррозии и уделить внимание выбору материалов для изготовления аппаратуры, оборудования, арматуры и др. [c.125]

    Во многих случаях для обеспечения высокой производительности и экономичности выпаривание и ректификацию нестабильных, продуктов проводят под вакуумом, что позволяет снизить температуру процесса при использовании теплоносителя с высокой температурой. Однако в этом случае требуется высокая надежность аппаратуры, систем контроля и регулирования процессов, обеспечивающих безаварийное отключение при опасных отклонениях давления и температуры. Однако такие условия не всегда удается обеспечить. [c.141]

    В системе его водоснабжения вода подавалась на предприятия без всякой подготовки. В отдельные периоды года, особенно весной, почти вся теплообменная аппаратура забивалась посторонними включениями и остатками биологических обрастаний, что приводило к продолжительным нарушениям технологического режима в системах ректификации и абсорбции и обильному выбросу газов и легковоспламеняющихся жидкостей в атмосферу. Неочищенная промышленная вода вызывала также коррозию теплообменников. [c.246]


    Аппаратура, предназначенная первоначально для осуществления межфазного контакта в таких процессах, как абсорбция, ректификация или экстракция, часто применяется и для проведения реакций. Многие гетерогенные реакции в жидкой фазе протекают в колоннах с насадкой. При получении кальцинированной соды по методу Сольвея используются колонны с особого типа колпачковыми тарелками. Электрохимические процессы, такие, как окисление, восстановление и электролиз, требуют применения специальной аппаратуры, которая здесь не рассматривается. Описание электродуговых и фотохимических процессов можно найти в специальной литературе. [c.381]

    Колонная аппаратура. Способы ее обвязки удобнее всего проследить на примере монтажной проработки узла ректификации (рис. 71). [c.186]

    Углубление отбора дистиллятов при сохранении нужной четкости ректификации достигается при уменьшении числа тарелок между зоной испарения и вакуумсоздающей аппаратурой в каждой колонне. В результате уменьшаются потери давления на тарелках и снижается остаточное давление в зоне испарения. В то же время общее число тарелок в двух колоннах оказывается достаточным для разделения. [c.36]

    Расчеты показывают, что имеющаяся на установке фракционирующая аппаратура может применяться без реконструкции, так как хотя количество поступающего в реактор рециркулирующего изобутана при использовании его для охлаждения и увеличивается, но в систему ректификации этот избыток не попадает, а отделяется от продуктов реакции в ловушке и затем в испарителе и возвращается в зону реакции после конденсации в компрессорах. [c.161]

    Глубокая очистка 5е и Те может быть осуществлена ректификацией (в кварцевой аппаратуре). Те высокой чистоты получают обычно зонно й плавкой. [c.456]

    Снижение потерь за счет необратимости процесса ректификации является традиционной задачей исследования. Речь идет именно о снижении, поскольку при разделении многокомпонентных смесей реализация идеального процесса,практически невозможна. Наличие достоверных моделей расчета колонн и теплообменной аппаратуры делает возможным определение оптимальных условий работы установок в настоящее время с достаточной точностью. На современном этапе исследований ставится вопрос о рациональном распределении энергии потоков внутри схемы и снижении непроизводительных расходов тепла. Решение этой задачи становится возможным в результате применения системного анализа к исследованию химических производств. [c.488]

    ППП по расчету процессов ректификации охватывает широкий круг задач по следующим взаимосвязанным направлениям расчету фазовых состояний парожидкостных систем расчету рабочих режимов ректификации для оптимального проектирования и реконструкции синтезу оптимальных схем разделения гидравлическому расчету колонной аппаратуры. [c.564]

    В процессах экстрактивной ректификации регенерация разделяющего агента за редкими исключениями производится путем ректификации, чему благоприятствует обычно больщая разница температур кипения разделяющего агента и компонентов заданной смеси. Это обусловливает более простое технологическое оформление этих процессов по сравнению с непрерывными процессами азеотропной ректификации. Для промышленных установок экстрактивной ректификации типичной является принципиальная схема, изображенная на рис. А,а (стр. 35). Отклонения от этой схемы возникают при образовании разделяющим агентом азеотропов с отгоняемыми компонентами. Связанные с этим усложнения технологической схемы обусловлены необходимостью разделения азеотропов, способы осуществления которого были рассмотрены при обсуждении процессов азеотропной ректификации. В качестве типичного примера процесса экстрактивной ректификации в гл. IV (стр. 288) описывается метод выделения бутадиена из бутан—бутадиеновых смесей. Обязательной частью промышленной установки для экстрактивной ректификации является оборудование для очистки разделяющего агента от примесей, образующихся при длительной работе (смол, продуктов коррозии аппаратуры и др.). Наиболее распространенным приемом такой очистки является дистилляция, [c.208]

    Расчет и, в большей степени, проектирование массообменных установок связан с выполнением ряда ограничений еше на стадии смысловой постановки задачи. Характер ограничений определяется многими факторами и, в первую очередь, требованиями к качеству продуктов разделения, особенностями физикохимических свойств компонентов смеси (термолабильность, близость температур кипения компонентов и т. д.), а также требованиями обеспечения устойчивых условий эксплуатации, наличием доступных теплоносителей и хладагентов для охлаждения продуктов и создания парового потока при ректификации. В зависимости от постановки задачи расчета могут накладываться Офаничения на аппаратурную организацию процесса. Таким образом, расчет установки является задачей оптимизации с офаничениями, причем часть из них связана с требованиями к качеству продуктов и обеспечению максимальной разделительной способности, а другая - с обеспечением экономичности эксплуатации процесса. Однако все эти офаничения тесно взаимосвязаны. Например, максимальная разделительная способность может быть обеспечена как в результате поиска оптимального технологического режима работы, так и подбором высокоэффективной аппаратуры. [c.246]


    Книга представляет собой руководство по технике лабораторной перегонки. В ней изложены физические основы процессов дистилляции и ректификации, описаны различные методы перегонки и соответствующая аппаратура, а также контрольно-измерительные устройства. Один из разделов книги посвящен вопросам ректификации на пилотных (опытнопромышленных) установках. [c.4]

    В практике лабораторной ректификации постоянно встречаются смеси, фазовое равновесие которых еще не исследовано в таких случаях возникает вопрос о выборе наиболее целесообразной аппаратуры для получения искомых данных. [c.86]

    Способы расчета процесса непрерывной ректификации изложены в разд. 4.7.2 [пример — разделение смеси жирных кислот Се—С, состава 81% (мол.) С при 20 мм рт. ст., % = 96%, -= 0,5% ] и в гл. 9 (пример — разделение многокомпонентной смеси жирных кислот i— g при 20 мм рт. ст.). В разд. 5.2.2 описана аппаратура и способы проведения непрерывной ректификации. [c.190]

    Расчет вакуумной ректификации следует в том же порядке, что и атмосферной ректификации. Дополнительно в расчет условий процесса вакуумной перегонки входит 1) выбор оптимального рабочего давления разгонки (разд. 4.6.2 и 4.10.6) 2) построение кривой равновесия идеальной смеси для заданного рабочего давления (разд. 4.6.1, табл. 10) 3) определение зависимости объема паров от давления (разд. 4.11) 4) расчет диаметра труб и герметичности аппаратуры (разд. 5.4.1) 5) измерение и регулирование давления (разд. 8.3). [c.190]

    Значительная затрата времени на аналитическую четкую ректификацию (например, 120 ч для разделения нефтяной фракции с интервалом кипения от —30 до +260 °С) послужила стимулом для моделирования процесса ректификации с использованием специальной газовой хроматографической аппаратуры [26]. При этом получаются опытные значения концентраций, которые сравнимы с результатами разделения в ректификационной колонне с числом теоретических ступеней разделения 100. Указанным способом можно анализировать как сырые нефти, так и нефтяные фракции соединений с числом атомов в углеродной цепи от 1 до 40. Прибор для одновременной аэрографии и ректификации с помощью небольшого встроенного компьютера позволяет получать кривые температура кипения — концентрация [% (масс.)] . Площади под этими кривыми непрерывно интегрируются и подсчитанные значения через каждые 10 с регистрируются самописцем. На анализ указанной выше нефтяной фракции (от —30 до +260 °С) требуется всего лишь около 1 ч [27]. [c.207]

    Основное преимущество непрерывной ректификации состоит в том [28], что разделяемая смесь находится в мягких температурных условиях. Кроме того, при непрерывной, 15 работе часто удается достигнуть производительности лабораторной уста-новки, такой же, как и для полупромышленных установок периодического действия. Непрерывно работающие лабораторные установки производительностью 10—20 кг/сут можно использовать для получения различных продуктов, например термически нестойких фармацевтических препаратов, для отгонки растворителей и т. д. Пропускная способность лабораторных установок составляет 0,5— 5 л/ч. Сильно агрессивные вещества, вызывающие коррозию металлической аппаратуры, обычно разделяют в стеклянных установках непрерывного действия. На основе опытных данных, полученных с использованием таких установок, с достаточной степенью надежности можно разрабатывать полупромышленные и промышленные установки из фарфора, технического стекла или металла. [c.236]

    Аппаратура для непрерывной ректификации [c.240]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]

    Под вакуумной перегонкой понимают процесс дистилляции и ректификации, который проводят при давлении ниже давления окружающей среды. Обычно остаточное давление в колоннах составляет примерно 0,5 мм рт. ст. Для перегонки при более низких давлениях используют специальную аппаратуру. [c.263]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]

    Стирол является продуктом, весьма склонным к термической полимеризации, причем чистка забитой твердым полимером аппаратуры и трубопроводов — это сложная и трудоемкая операция. Поэтому перегонка смесей, содержащих стирол, при атмосферном давлении недопустима. Все колонны ректификации стирола работают под вакуумом (остаточное давление 3,99—6,65 кПа). Для четкого отделения стирола от низко- и высококипящих примесей применяется система из трея последовательно соединенных колонн и одного перегонного куба. Помимо чисто инженерно-технических соображений, такое секционирование ректификационной системы имеет целью уменьшить перепад давления между верхом и кубом и тем самым воспрепятствовать повышению температуры в нижних частях колонн. В качестве стабилизаторов при перегонке стирола служат небольшие добавки п-хи-нона, л-трет-бутилпирокатехина и др. [c.385]

    Колонные аппараты для массообменных процессов. Разнообразие свойств жидких и газовых сред, в которых протекают массообменпые процессы при ректификации, абсорбции, экстракции и дистилляции в различных отраслях химической иромьпплен-иости, потребовало применения специальных конструкций колонной аппаратуры. [c.44]

    Некоторые аварии в производстве винилхлорнда связаны с загазованностью помещений ацетиленом, винилхлоридом, хлористым водородом. Аварийные выбросы в атмосферу производственных помещений взрывоопасных и токсичных газов чаще всего происходят в результате колебаний давления в системе и разрушения самодельных предохранительных мембран, имеющих большой диапазон срабатывания и не обеспеченных отводными трубами. Загазованность иногда создается разгерметизацией сальниковой арматуры, трубопроводов, полимеризаторов и другой аппаратуры, что объясняется низким качеством их изготовления и ремонта. Следует значительно улучшить качество изготовления и монтажа оборудования трубопроводов и арматуры, тщательно подбирать для них коррозионно-стойкие материалы и прежде всего разработать более производительные и надежные смесители ацетилена с хлористым водородом, контактные аппараты, компрессоры ацетилена и реак ционного газа, тепло- и массообменную аппаратуру для газовыде ления и ректификации пожаро- и взрывоопасных смесей под высо кйм давлением. [c.71]

    Следует периодически осматривать и очищать внутренние поверхности аппаратуры. Отпассивированная аппаратура должна 5ыть запущена в работу без загрязнений и запылений. Касаться обработанной поверхности разрешается только в чистых перчатках. Нужно следить за бесперебойностью подачи воздуха в окислитель, нельзя допускать падение вакуума в колоннах ректификации и дистилляции, необходимо осуществлять строгий контроль содержания кислорода в отходящем из окислителей газе, которое не должно превышать 10,3% (об.). [c.125]

    Авторы надеются, что материалы, приведенные в книге, найдут практическое применение при оптимизации и разработке аппаратуры для химических реакторов, теплообменников с непосредственным контактом фаз и для ряда технологических процессов разделения (абсорбция, экстракция, ректификация, кристаллизация и т. д.). Гл. 3—8 и разделы 1.1 —1.3 написаны Б. И. Броунштейном, гл. 2 и разделы 1.4 и 1.5. - В. В. Щеголевым. Раздел 5.5 написан Б. И. Броунштейном совместно с О, Л. Поляковым и Ю. А. Хватовым. [c.4]

    Запрограммированные для вычислительных машин методы расчета существуют почти для всех типовых технологических процессов. Кроме того, имеются стандартные методы расчета технологических трубопроводов и конструктивных элементов аппаратуры. Как нетрудно заметить, из типовых процессов основное внимание уделяется ректификации. Описаны также методы расчета теплообменников химических реакторов - в систем трубопроводов - конструктивных элементов , а также сушилок . Комитет машинных расчетов Американского института инженеров-химиков (AI hE) опубликовал список программ, каждую из которых, проявив достаточную заинтересованность, можно получить . [c.174]

    Для установления возможности осуществления непрерывного процесса гидролиза, отгонка спнртоводных паров и их ректификации проведены опыты, причем, несмотря на несоответствие отдельных частей аппаратуры и скоростс й отгонки и ректификации спирта, удалось получить последний в виде 84 %-ного раствора при ко1щентрации отработанной кислоты 82 %. Кратко перечислим наиболее характерные результаты. [c.35]

    Традиционно кислород и азот получают методами низкотемпературной ректификации воздуха — криогенным способом и адсорбционным. Оба этих метода, кроме достоинств, имеют и недостатки сложность и громоздкость аппаратуры, необходимость применения низких температур (криогенный), регенерации адсорбента, истираиие его и т. д. Кроме того, для многих областей применения кислорода и азота их концентрации в обогащенном потоке и произ1водительность установок могут оказаться недостаточными. В отличие от традиционных мембранные газоразделительные установки — компактные, модульные, простые в эксплуатации и надежные— весьма перспективны. Причем стоимость кислорода (и азота) при мембранном разделении воздуха может быть значительно более низкой, чем при криогенном или адсорбционном, особенно при небольших производительностях — менее 20 т/сут. (в пересчете на чистый кислород) [71, 72]. [c.305]

    Все установки коксохимического производства, как и нефтехимии, строят из несгораемых материалов. Наиболее взрывоопасными участками этих производств являются коллекторные газопроводы, эксгаустерная, скрубберы, бензольное отделение, отделение ректификации и смолоразгонная. Пожары и взрывы на этих установках протекают так же, как на установках нефтепереработки. В практике отмечены случаи, когда взрывы паровоздушных смесей в технологических или товарных насосных, а также в печах, приемных и погонноразделительных отделениях приводили к сильному разрушению конструкций этих сооружений. Возможность взрывов на производственных установках тем больше, чем больше утечки газов, паров и легковоспламеняющихся жидкостей через неплотности во фланцевых соединениях трубопроводов и аппаратуры. [c.18]

    Алгоритм расчета ректификации с химической реакцией. Процессы получения новых веществ (реакторные процессы) и выделения продуктов заданного качества являются основными в химической промышленности. Продукты реакции, попадая в ректификационную колонну, подвергаются воздействию высоких температур и давлений с интенсивным взаимодействием потоков пара и жидкости. Если учесть, что в смеси присутствуют или вновь появляются вещества, способствующие протеканию побочных реакций, что приводит к загрязнению целевых продуктов, то становится очевидной необходимость учета возможности появления дополнительных относительно исходного питания компонентов и организации соответствующим образом процесса. Последнее особенно важно при получении продуктов высокой чистоты. Протекание химических реакций одновременно с ректификацией не является чем-то исключительным в повседневной практике эксплуатации промышленных процессов. Это полимеризация, выделение смолистых осадков, появление неидентифи-цируемых примесей в продуктах разделения и появление ряда других внешних признаков наличия химической реакции. Знание условий протекания таких реакций позволяет заранее принять соответствующие меры, предохраняющие целевые продукты и аппаратуру от загрязнения. [c.364]

    Расчет теплообменной аппаратуры. ПоСтанОйкй задачи сро ёктного расчета теплообменного оборудования узла ректификации формулируется следующим образом [69]. Для всех аппаратов известны расход, начальная и конечная температура основного технологического потока, начальная температура тепло- или хладагента, а также теплофизические свойства обоих потоков. Требуется определить оптимальные в экономическом отношении параметры всех аппаратов и режимы их работы, под которыми понимаются расход и конечная температура хлад- или геплоаген-та. Алгоритм построен по модульному принципу и включает в себя расчет поверхности теплообмена кипятильника, конденсатора, подогревателя-холодильника конвективного типа, выбора стандартного аппарата. В основу расчетной части алгоритма положены известные критериальные соотношения [70, 71] и уравнение теплопередачи, записанное в дифференциальной форме  [c.151]

    Дистилляция и ректификация как методы физического разделения нашли весьма широкое применение в химической промышленности, и в том числе в заводских и исследовательских лабораториях. Однако следует отметить, для лабораторной перегонки часто еще используют малоэффективную с совршеннои точки зрения аппаратуру. К тому же в большинстве случаев не проводят расчетов процесса разделения, а работают чисто эмпирически, руководствуясь опытными данными. [c.15]

    Вторая глава настоящей книги Из истории лабораторной перегонки одновременно знакомит читателей с общими принципами перегонки. В третьей главе уточняются основные понятия, вводятся единицы измерения и условные обозначения, при этом осоЗое внимание уделяется стандартизации, которая дает воз.мож-ность за счет унификации определенных приборов и методик получать сопоста-вимыз результаты, служащие фундаыенто.м для дальнейших научных исследований. В главах 4—6 сначала изложены физические основы процесса перегонки и приведена классификация разделяемых смесей, после чего разносторонне рассмотрены обычные и селективные методы перегонки, с помощью которых можно решать самые разнообразные задачи разделения. В главах 7 п 8 описываются необходимые для проведения перегонки приборы и установки, включая вспомогательное оборудование, а также контрольно-измерительную и регулирующую аппаратуру. Наконец, девятая глава касается вопросов, которые следует принимать во внимание при оборудовании лабораторий дистилляции и ректификации и при вводе установок в эксплуатацию. [c.18]

    Хальденвангер [194] наиболее полно сформулировал требования, предъявляемые к эталонным смесям 1) по свойствам эталонная смесь должна приближаться к идеальному раствору, т. е. практически без отклонений подчиняться закону Рауля и иметь относительную летучесть компонентов, постоянную для всех концентраций 2) данные по равновесию пар— жидкость должны быть известны или их можно легко рассчитать 3) смесь должна состоять только из двух компонентов во избежание трудностей при измерениях и расчетах 4) относительная летучесть компонентов должна иметь такое значение, чтобы в испытуемой колонне достигалось достаточное, но не слишком большое разделение 5) температуры кипения смеси должны лежать в интервале, для которого нетрудно подобрать надежную тепловую изоляцию колонны 6) компоненты смеси должны быть термически стойкими в условиях ректификации 7) вещества и их смеси не должны вызывать коррозии конструкционных материалов, использованных в аппаратуре 8) исходные вещества должны быть легко доступными 9) вещества не должны содержать примесей их чистота должна поддаваться проверке доступными методами 10) смеси с любой концентрацией компонентов должны легко поддаваться анализу. [c.140]

    Нагель и Зинн [78] предлагают модифицированный метод Мак-Кэба для расчета экстрактивной ректификации. Кортюм и Фальтуш [79] обсуждают проблемы, возникающие при реализации подобных селективных методов разделения. К ним относятся конструирование автоматизированной аппаратуры для непрерывной экстрактивной перегонки (из стали 4А) с подбором избирательно действующего агента, а также расчет минимального флегмового числа и необходимого количества разделяющего агента. [c.318]

    Основным назначением методов лабораторной перегонки и ректификации является определение фракционного состава нефти и нефтепродуктов, который может быть вьфажен несколькими способами. Методы различаются применяемой для разделения исходной смеси на ( ракции аппаратурой и способами отбора и фиксации выхода фракций. Ниже рассмотрены основные из этих методов. [c.45]


Библиография для Ректификация аппаратура: [c.419]   
Смотреть страницы где упоминается термин Ректификация аппаратура: [c.322]    [c.4]    [c.3]    [c.7]    [c.15]    [c.16]   
Руководство по лабораторной ректификации 1960 (1960) -- [ c.261 , c.267 , c.319 , c.349 , c.350 ]

Производство циклогексанона и адипиновой кислоты окислением циклогексана (1967) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура для вакуумной ректификации

Аппаратура для лабораторной ректификации

Аппаратура для непрерывной ректификации

Аппаратура для очистки и разложения фенолятов, обезвоживания и ректификации фенолов

Влияние загрязняющего действия материала аппаратуры на глубину очистки веществ методом ректификации

Глава тринадцатая Абсорбционная и ректификационная аппаратура Аппаратурное оформление процессов абсорбции и ректификации

Киров Аппаратура и основные Аппараты для ректификации спирта

Простая дестилляция. Периодическая ректификация. Непрерывная ректификация. Вычисление теплот испарения - 67. Аппаратура дестилляционных и ректификационных установок

Ректификация метанола-сырца аппаратура

Ректификация, аналитическая, аппаратура

Ректификация, аналитическая, аппаратура перегонки скипидара

Ректификация, аппаратура приборы

Фенолы получение аппаратура ректификация сырых фенолов с обезвоживанием III



© 2024 chem21.info Реклама на сайте