Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективные методы перегонки

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]


    Существует несколько методов выделения изобутилена из продуктов дегидрогенизации. Один из них заключается в первоначальном выделении изобутилена селективной абсорбцией серной кислотой, с последующим фракционированием углеводородов на легкую фракцию, состоящую из изобутана и 1-бутена, и конечную фракцию, куда входят к-бутан и 2-бутены. Из этих двух фракций последующей экстракционной перегонкой выделяют отдельные компоненты. Другой метод выделения изобутилена заключается в экстракционной перегонке углеводородов с ацетоном. Регенерированные олефиновые фракции могут без дальнейшего разделения служить сырьем для получения из них бутадиена. [c.70]

    В результате бурного развития техники лабораторной перегонки за последние 30 лет и углубления специализации назрела необходимость в создании руководства по перегонке для лабораторий и опытных производств, рассчитанного на читателя, не имеющего специальных знаний в этой области. Такое руководство должно включать методику определения давления паров и кривых равновесия, а также подробное описание непрерывных и селективных методов перегонки и рекомендации по применению контрольно-измерительной и регулирующей аппаратуры. Подобный обобщающий труд должен способствовать устранению многих неверных представлений о данном процессе разделения, подверженном влиянию многочисленных факторов, и послужить обстоятельным руководством при практическом проведении различных, в том числе и специальных, видов перегонки [c.18]

    Селективные методы перегонки [c.294]

    К селективным методам перегонки относятся такие методы дистилляции и ректификации, разделяющая способность которых обеспечивается или дополнительно повышается при добавлении в исходную смесь какого-либо вещества в газообразном, жидком или твердом состоянии. Сюда же относят и методы, связанные с образованием новых веществ в результате каких-либо реакций, протекающих в процессе перегонки. К селективным методам можно также причислить комбинированные методы, дополняющие перегонку другими методами разделения, например газовой хроматографией. [c.294]

    Атом хлора, образующийся в реакции (24.20), вступает в реакцию со следующей молекулой этана, и таким образом происходит цепная реакция. Следовательно, каждый квант света, поглощенный молекулой хлора, приводит к образованию множества молекул этилхлорида. Описанная реакция служит примером радикального цепного процесса. Одним из неудобств подобных радикальных цепных реакций является их не слишком высокая селективность (избирательность). По мере возрастания концентрации этилхлорида в такой реакции атомы хлора могут замещать следующие атомы В(з дорода, В результате чего образуются дихлорэтан и даже более хлорированные молекулы. Таким образом, в реакции образуется несколько продуктов, которые приходится отделять друг от друга перегонкой или другими методами разделения. [c.425]


    Описанные выше селективные методы перегонки основаны на смещении фазового равновесия при введении в смесь разделяющего агента в виде пара (перегонка с водяным паром) или в виде жидко-. сти (азеотропная и экстрактивная перегонка). Смещение фазового равновесия можно вызвать также путем растворения в разделяемой смеси соли, что приводит к изменению соотношения парциальных давлений исходных компонентов. [c.321]

    Уже эти немногие примеры показывают, что для решения трудных проблем разделения все возрастающее значение приобретают селективные методы перегонки систематические исследования позволяют открыть новые области их применения. Сочетание процессов перегонки с адсорбционными эффектами привело к разработке адсорбционной перегонки . Фукс и Рот [93 ] исследовали влияние материала насадки на процесс разделения смеси вода— уксусная кислота. [c.323]

    После выделения аммиака из надсмольной воды, последняя поступает на обесфеноливание. Удаление фенолов осуществляют двумя методами методом перегонки с паром и методом экстракции селективными растворителями. Окончательное удаление фенолов проводят на установках биохимической очистки с использованием микроорганизмов, окисляющих не только [c.63]

    Методы разделения углеводородов стали более разнообразными. Простая ректификация была дополнена азеотропной и экстракционной перегонками. Для концентрирования и очистки некоторых видов сырья, из которых производят продукты химической переработки нефти, была применена экстракция растворителями, уже освоенная нефтеперерабатывающей промышленностью (селективная очистка нефтепродуктов). Были внедрены непрерывные методы адсорбции твердыми поглотителями (активированный уголь и силикагель). [c.21]

    Под селективными методами разделения понимают такие методы перегонки, при которых вводят какие-либо вещества в газообразном, жидком или твердом состоянии, облегчающие разделение компонентов исходной смеси. К селективным методам относятся и те случаи, когда разделение становится возможным только благодаря введенной добавке сюда же относят процессы, в которых возникают в результате реакции новые вещества, отделяемые в процессе перегонки. Далее, к этой категории можно отнести и процессы, в которых перегонку дополняют другими методами разделения, например хроматографией. [c.325]

    В описанных выше селективных методах разделения воздействие на фазовое равновесие достигается в результате добавок веществ в виде пара (перегонка с паром) или добавок жидких веществ (азеотропная или экстрактивная ректификация). Однако имеется также возможность путем растворения какой-либо соли [c.350]

    Для разделения бензинов на группы компонентов по строению или по химически индивидуальным компонентам применяют различные методы перегонки и селективную экстракцию (для ароматических углеводородов. [c.98]

    В некоторых случаях специфичные индивидуальные соединения могут быть удалены из газового потока путем использования селективной химической реакции [5, 59]. В тех случаях, когда микрокомпоненты относительно нелетучи, растворитель может быть удален выпариванием, в результате чего произойдет дальнейшее концентрирование микрокомпонентов. Этот комбинированный метод экстракции и выпаривания применялся для распознавания и оценки различных алкогольных напитков по их хроматограммам [73]. В случаях, когда микрокомпоненты более летучи, чем основное вещество, можно применять комбинирование метода перегонки с паром и метода экстракции, как при изучении запахов кукурузного масла [40 ]. Если матричное вещество мало летуче, то применив продувку нагретым газом-носителем, можно быстро отогнать из него летучие компоненты. Этим способом из восков и масел удалялись растворители микрокомпонентов [31]. [c.328]

    При исследовании смесей неизвестного состава задачи идентификации упрощаются применением специфического концентрирования, позволяющего выделять отдельные классы органических соединений. Идентификация отдельных компонентов внутри класса более легко достигается нри использовании различных зависимостей, связывающих хроматографические характеристики (время, объемы удерживания) с физико-химическими свойствами веществ внутри ряда (температура кипения, молекулярный вес). Выделение отдельных классов при концентрировании часто связано с первоначальным более или менее селективным накоплением (перегонка, экстракция, вымораживание и т. д.). Поэтому разработка общих схем систематического анализа органических компонентов вод имеет существенное значение для выбора наиболее рационального пути концентрирования, с использованием элементов этих схем нри решении отдельных задач [34, 35]. Дополнительные возможности для идентификации дает метод аналитической реакционной хроматографии, который использует химические превращения анализируемых веществ в хроматографической схеме [36, 37]. [c.181]


    Легкие каталитические газойли используются в качестве компонентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной перегонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы. В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинированное использование легкого газойля, В этом случае его подвергают экстракции одним из растворителей, применяемых в производстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизельного топлива нижний слой, содержащий большую часть ароматических углеводородов, также после отгонки растворителя (экстракт) может быть использован в качестве сырья для получения высококачественной сажи. [c.43]

    Экстракционный метод отделения германия от других элементов по селективности равноценен методу перегонки германия в виде тетрахлорида и превосходит его по скорости и простоте выполнения. Кроме того, окончательно германий получают в виде водного раствора, свободного от больших количеств соляной кислоты . Необходимо принять меры, чтобы в солянокислом растворе, обрабатываемом четыреххлористым углеродом не присутствовало никаких нерастворимых веществ, которые могут удерживать германий. [c.434]

    Во время первой мировой войны, в нефтяной промышленности были введены новые методы рафинирования смазочных масел, заключающиеся в промывке масляных фракций (выделенных из нефти путем перегонки) селективными растворителями. В результате такой обработки свойства масел улучшились. Эти физические методы рафинирования масел почти совсем вытеснили применявшиеся прежде химические методы рафинирования серной кислотой и стали основой рациональной технологии рафинирования нефтяных масел. Методы описаны в многочисленных статьях и монографиях [1. 18, 201. [c.379]

    Ароматический экстракт после промывки направляется иа установку очистки глиной для удаления следов непредельных соединений. Эту операцию можно исключить, если непредельные соединения удалены из сырья экстракции методом селективного гидрирования на специальных катализаторах (алюмо-пла-тиновых или алюмо-кобальт-молибденовых). Экстракт, не содержащий непредельных соединений, направляется на фракционную перегонку для выделения индивидуальных компонентов. [c.287]

    Методы азеотропной и экстрактивной перегонки широко применяют в промышленности в тех случаях, когда обычное ректификационное разделение связано со значительными трудностями. В лабораториях же для разделения близкокипящих компонентов неидеальных смесей без азеотропа, а также азеотропных смесей обычно используют другие методы, например химические методы, экстракцию или хроматографию. Ниже показано, что для разделения указанных выше смесей селективные методы перегонки, такие как азеотропная и экстрактивная ректификация, имеют существенные преимущества. Общий отличительный признак этих обоих методов перегонки заключается в том, что они основаны на влиянии специально подобранного вещества на отношение коэффициентов активности разделяемых компонентов [17]. Кюммерле 18] показал, что возможна также комбинация обоих методов — азеотропноэкстрактивная ректификация. Герстер [19] сравнил эти методы и обычную ректификацию с экономической точки зрения. [c.299]

    Смолистые вещества, содержащиеся в нефтяных продуктах (например в маслах), ухудшают их свойства, повышают склонность масел к окислению п осадкообразованию. Поэтому для получения товарных масел необходимо удаление этих веществ из масляных фракций, что достигается различными методами очистки масел с помощью селективных растворителей или адсорбентов. Остатки от перегонки (мазут, гудрон), а также крекинг—остатки служат сырьем для получения искусственных битумов. Битумы находят широкое применение в промышленности (строительная промышлен- [c.106]

    Селективность выделения нормальных алканов карбамидным методом снижается с повышением пределов перегонки, исследуемого сырья. При выделении алканов из деароматизированной фракции i8—С25 карбамидным методом, даже применяя последующую дополнительную очистку трехступенчатой обработкой мочевиной не удается получить чистые нормальные алканы [74]. [c.75]

    Таким образом, используя обычную ректификацию, селективную химическую экстракцию и физический метод экстрактивной перегонки, удается весьма четко разделить смесь пяти различных углеводородов С4. [c.198]

    Производство масел из нефтей с высоким потенциальным содержанием масел экономически выгодно, так как при этом снижается себестоимость независимо от метода получения (вакуумной перегонки, деасфальтизации, депарафинизации, селективной очистки и др.) и увеличивается выход продукции. [c.41]

    Углеводороды, содержащие более пяти углеродных атомов, имеют обычно близкие температуры кипения. Их выделяют в виде смесей — фракций с узким интервалом температур кипения. Довольно часто такие узкие фракции используют для дальнейшей химической переработки без дополнительного разделения. Для выделения из узких фракций индивидуальных углеводородов пользуются различными современными методами разде-ления экстракцией селективными растворителями , азеотропной и экстрактивной перегонкой и др. [c.68]

    Вторая глава настоящей книги Из истории лабораторной перегонки одновременно знакомит читателей с общими принципами перегонки. В третьей главе уточняются основные понятия, вводятся единицы измерения и условные обозначения, при этом осоЗое внимание уделяется стандартизации, которая дает воз.мож-ность за счет унификации определенных приборов и методик получать сопоста-вимыз результаты, служащие фундаыенто.м для дальнейших научных исследований. В главах 4—6 сначала изложены физические основы процесса перегонки и приведена классификация разделяемых смесей, после чего разносторонне рассмотрены обычные и селективные методы перегонки, с помощью которых можно решать самые разнообразные задачи разделения. В главах 7 п 8 описываются необходимые для проведения перегонки приборы и установки, включая вспомогательное оборудование, а также контрольно-измерительную и регулирующую аппаратуру. Наконец, девятая глава касается вопросов, которые следует принимать во внимание при оборудовании лабораторий дистилляции и ректификации и при вводе установок в эксплуатацию. [c.18]

    Если а = 1 (lga = 0), то кривые давления паров пересе-jiaют я, как например для смеси л -крезол — л-крезол, и в условиях, соответствующих точке пересечения, разделение двух компонентов ректификацией невозможно. При этом разделение может быть достигнуто только селективными методами перегонки (см. разд. 6.2). Чем больше величина а, тем более выпуклой становится идеальная кривая равновесия и тем легче осуществить разделение. [c.83]

    За последние 30 лет проведена большая исследовательская работа по усовершенствованию техники лабораторной перегонки. Теперь в нашем распоряжении имеются современные приборы, изготовленные из стандартных деталей, а также полностью автоматизированные и высоковакуумные установки разработаны методы расчетов процесса перегонки лабораторные способы разделения включают разнообразные методы перегонки от микроректификацин с загрузкой менее 1 г до непрерывных процессов с пропускной способностью до 5 л/ч, от низкотемпературной ректификации сжиженных газов до высокотемпературной разгонки смол, от перегонки при атмосферном давлении до молекулярной дистилляции при остаточном давлении ниже 10 мм рт. ст. Усовершенствованы селективные методы разделения путем изменения соотношения парциальных давлений компонентов в парах удается разделять такие смеси, которые до сих пор не поддавались разделению обычными методами. [c.15]

    Нагель и Зинн [78] предлагают модифицированный метод Мак-Кэба для расчета экстрактивной ректификации. Кортюм и Фальтуш [79] обсуждают проблемы, возникающие при реализации подобных селективных методов разделения. К ним относятся конструирование автоматизированной аппаратуры для непрерывной экстрактивной перегонки (из стали 4А) с подбором избирательно действующего агента, а также расчет минимального флегмового числа и необходимого количества разделяющего агента. [c.318]

    Получаемые из нефтей путем относительно грубой сортировки их углеводородного состава (методами перегонки и кислотноконтактной или селективной очистки) масла по своим свойствам далеко не всегда удовлетворяют предъявляемым к ним требованиям. [c.111]

    Углеводородный состав твердых нефтяных парафинов довольно сложный помимо парафинов нормального и изостроения, в них присутствуют твердые циклопарафиновые углеводороды, на что указывается во многих работах [1—6]. В последние годы для изучения химического состава твердых парафинов применялся масс-спектрометрический анализ [7—9]. При помощи этого метода было установлено [9], что в твердых товарных парафинах наряду с парафиновыми углеводородами нормального и изостроеиня присутствуют алкилбензолы и циклонарафины содержание последних колеблется в пределах от 2,2 до 21,6%. Так как углеводороды, входящие в состав твердых парафинов, обладают близкими физическими и химическими свойствами, они весьма трудно поддаются разделению методами перегонки, кристаллизации, селективной адсорбции, нитрования, окисления и др. [c.208]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Комплексообразование служит дополнительным средством разделения. Хорошо известны приемы и принципы адсорбции и перегонки, применяемые для разделения молекул по классам и размерам, я деление же при помощи комплексообразования. основано jia использовании различм в japo TpaH-етвенном строении молекул с учетом их размеров и класса. В сочетании с методами фракционирования комплексообразование во многих случаях может применяться для разрешения проблем разделения в дополнение к существующим методам. Комплексообразование при помощи мочевины и тиомочевины не вполне селективно, как предполагалось первоначально. Отсутствует четкое ограничение структурных типов, образующих комплексы, особенно среди высокомолекулярных углеводородов. [c.202]

    Фирма Шелл ойл на установке в Хоустоне для извлечения ароматических углеводородов пользуется методом селективной перегонки с фенолом. [c.155]

    К недостаткам метода следует отнести сравнительно низкую селективность, связанную с захватом кристаллами выделяющегося вещества заметных количеств маточного раствора, необходимость применения специального оборудования (кристаллизаторы, фильтры, центрифуги) и, естественно, неунивер-сальность. Часто метод применяется для выделения из растворов твердых, в обычном состоянии высококипящих веществ, разлагающихся при перегонке (даже при употреблении вакуума). Практическими примерами использования метода могут служить так называемые процессы низкотемпературной депарафинизации нефтепродуктов, выделение таких веществ, как 1, 0-декандикарбоновая кислота, этриол и т. д. Примером технического применения метода для четкого разделения смеси веществ, близких по природе и свойствам, является процесс выделения п-ксилола из смеси ароматических углеводородов g. [c.319]

    В той же работе А. В. Агафонова с сотр. [246] показано, чта сочетанием процесса гидрирования при 300 ат с процессом карбамидной депарафинизации можно получать из дистиллятов прямой перегонки и каталитического крекинга масла с индексом вязкости 60 (для фракций 330—400° С) и 100 (для фракций 400— 480° С), в то время как фракции прямой перегонки после селеК тивной очистки и денарафинизации селективными растворителями имеют индекс вязкости не более 80—85. В табл. 55 приведены данные по качеству товарных масел, полученных при сочета-НИИ гидрирования и карбамидной депарафинизации. Из приведенных в табл. 56 технико-экономических показателей видно, tro получение масел из вторичного сырья методом гидрирования, Kap6aMHflHon депарафинизации и контактной доочистки дает- [c.169]

    В настоящее время существует два промышленных метода выделения бутадиена селективная абсорбция мед юаммиачными растворами и экстрактивная перегонка в присутствии фурфурола. [c.186]

    Глутаминовая кислота, например, кристаллизуется прямо из концентрированного гидролизата, насыщенного хлористым водородом, цистин и тирозин отделяют благодаря их плохой растворимости в воде. Селективное отделение ароматических аминокислот удается выполнить с помощью адсорбции на активированном угле. Полученную при гидролизе смесь аминокислот лучше всего разделить хроматографически. Выделению отдельных компонентов предшествует обычно разделение на кислые, основные и нейтральные группы аминокислот, при этом большое значение имеют электрофорез и специфические иоиообменники. Раннее распространенные методы разделения, такие, как фракционная перегонка эфиров (по Фишеру), экстракция моноаминокарбоновых кислот н-бутиловым или амиловым спиртом (по Дакину), осаждение гексоновых оснований лизина, аргинина и гистидина фосфорновольфрамовой кислотой или флавиановой кислотой, теперь имеют только второстепенное значение. [c.39]

    В то время как в промышленности уже в большом масштабе используют азеотропную и экстрактивную ректификацию, чтобы удешевить процессы, в которых обычное ректификационное разделение связано со значительными трудностями, в лабораториях до сих пор чаш е применяют другие методы — например, распределение, экстракцию или хроматографию — для разделения близкокипяицих смесей, неидеальных смесей без особых точек и азеотронных смесей. Ниже будет показано, что при подобных сложных задачах разделения методы селективной перегонки, такие, как азеотропная и экстрактивная ректификация, обладают существенными преимуществами. [c.332]

    Сернистые соединения можно удалять из топлив при помощи селективных растворителей и твердыми адсорбентами. При очистке необходимо учитывать, что во время удаления неразрушенных сернистых соединений различными реагентами (серной кислотой, селективными растворителями, адсорбентами и т. п.) происходят большие потери углеводородной части нефтепродуктов. Наиболее эффективный метод очистки топлив от сернистых соединений — каталитическое гидрирование. При гидроочистке сернистые соединения разрушаются водородом в присутствии катализатора с образованием углеводородов и сероводорода. Большая часть сероводорода удаляется из топлива при перегонке, а остатки его — после щелочной (этаноламинной или фенолятной) очистки. При гидроочистке удаляются кислородные и азотистые соединения. При этом образуются углеводороды, вода и аммиак. [c.123]

    Содержат в своем составе высокомол. углеводороды с т. кип. выше 350-450 °С- /е 5/ил/(ь/е масла, и малолетучие гетероароматич. соед. - нефтяные смолы. Последние отделяют от нефтяных масел перегонкой в высоком вакууме, азеотропной дистилляцией, селективной экстракцией и др. методами. [c.642]

    В зависимости от метода очистки различают следующие масла неочищенные (полученные непосредственно при перегонке нефти), выщелоченные, масла кислотно-щелочной, кислотноконтактной, селективной и адсорбционной очистки, масла гидрокрекинга. [c.52]


Смотреть страницы где упоминается термин Селективные методы перегонки: [c.252]    [c.173]    [c.260]    [c.77]    [c.15]    [c.170]   
Смотреть главы в:

Руководство по лабораторной перегонке -> Селективные методы перегонки




ПОИСК







© 2025 chem21.info Реклама на сайте