Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурации установление аминокислот

    Это правило очень полезно для предварительного установления конфигураций неизвестных аминокислот. [c.367]

    Стереохимические отнощения в ряду природных аминокислот, входящих в состав белков, в настоящее время достаточно ясны. В их исследовании можно различить две стадии — во-первых, установление стерических отношений между аминокислотами и, во-вторых, установление абсолютной конфигурации. Решающую роль в изучении обеих проблем сыграло химическое превращение различных соединений друг в друга -без затрагивания асимметрического атома углерода, иными словами, непосредственное установление конфигурационного соответствия химическим путем. [c.365]


    Для установления конфигурации других асимметрических центров в молекулах аминокислот обычно уничтожают асимметрию у а-углеродного атома и сравнивают конфигурацию оставшейся части молекулы и какого-нибудь другого соединения. Непосредственное сопоставление с конфигурацией а-углеродного атома может быть сделано лишь методами рентгеноструктурного анализа. [c.373]

    Как вы увидите ниже, все природные аминокислоты (за исключением глицина) имеют по крайней мере один хиральный центр. Аминокислоты, получаемые при гидролизе белков, оптически активны (за исключением глицина). Установление конфигурации -углеродного атома показало, что все они имеют 5-кон-фигурацию. Проекционная формула по Фишеру и перспективная формула приведены ниже  [c.196]

    Последним пунктом нашей задачи было установление конфигурации аминокислот. Этот вопрос можно решить при помощи ферментативного [c.480]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Понятие о способе установления конфигурации второго асимметрического атома углерода, если он есть, можно дать на примере треонина. Как всегда в природных а-аминокислотах, а-углеродный атом треонина имеет -конфигурацию. Это следует из того, что треонин восстанавливается посредством иодистого водорода в присутствии красного фосфора [c.500]

    Хлорацетил-( + )-изовалин гидролизуется ацилазой почек, а его энантиоморфное производное устойчиво к действию этого фермента. На основе данных подобных исследований ( + )-изовалин следует обозначать как Ь-изовалин. Применение этого биологического критерия для определения оптической конфигурации, по-видимому, вполне оправдано, но из сказанного выше видно, какие трудные задачи возникают при установлении конфигурации а-алкил-а-аминокислот. [c.90]

    Конфигурации многих природных а-аминокислот были связаны с глицериновым альдегидом путем серий превращений, подобных приведенной на рис. 17-7, где показано установление связи природного аланина с ь-(+)-молочной кислотой и, таким образом, с ь- [c.626]

    Конфигурации многих природных а-аминокислот были связаны с глицериновым альдегидом путем серий превращений, подобных приведенной на рис. 17-7, где показано установление связи природного аланина с ъ-(+)-молочной кислотой и, таким образом, с ь-(-)-глицериновым альдегидом. Аланин, следовательно, принадлежит к ь-ряду с помощью такого отнесения конфигураций было показано, что все а-аминокислоты, входящие подобно аланину в состав белков, относятся к ь-ряду. В состав других важных в биологическом отв ошении веществ входят многие в-аминокислоты. [c.524]

    Оптическая активность. Работами школы Э. Фишера, Каррера и Левина (1907—1930) путем соответствующих превращений, не затрагивающих асимметрический центр, было показано, что все аминокислоты в белках имеют одинаковую -конфигурацию при а-уг-леродном атоме. Интересно отметить, что один из двух подходов к установлению стереохимического соотношения между аминокислотами и соответствующими сахарами включает умышленное проведение реакции по асимметрическому центру. Хьюз и Инголд (1937) показали, что реакция 5 2 неизбежно сопровождается вальденовским обращением и что взаимодействие галоидпроизводных с азидом натрия может быть проведено так, чтобы исключить бимолекулярное замещение. Этим методом авторы превратили Д-молочную кислоту в вещество, оказавшееся неприродным аланином отсюда природному аланину была приписана -конфигурация  [c.637]

    Аминокислоты в свою очередь послужили основой для установления конфигураций других, более простых азотсодержащих соединений — аминов например, (—)-а-фенилэтиламин (84) был превращен в -( + )-аланин (79). Для осуществления этого перехода последовательно проводили бензоилирование, нитрование, восстановление нитрогруппы, диазотирование, замену диазогруппы на гидроксильную, окисление хромовым ангидридом в уксусной кислоте. Таким образом, конфигурация ( —)-а- [c.134]

    Аминокислоты в свою очередь послужили основой для установления конфигурации других, более простых азотсодержащих соединений—аминов. [c.247]

    Для установления пространственно конфигурации природных аминокислот (т. е. установления принадлежности к /- или -конфигурации) был применен метод превращения двух оптически активных" аминокислот А и В, имеющих аси.мметрические атомы СаЬсх и СаЬсу, в соединения одного и того же строения СаЬху путе.м замещения групп с на у и X. [c.136]

    Значительные усилия были направлены на установление абсолютной конфигурации ряда а-оксикислот [17—21, 216—233], Наряду с этим большой интерес вызвали хироптические свойства а-аминокислот в связи с тем, что эти небольшие молекулы являются строительным материалом для биологически важных макро.мо-лекул (разд. 4.1, 5.1) [17—21]. Правило секторов для карбоксила позволяет предсказать предпочтительную конфигурацию многих аминокислот и сложных эфиров. а-Оксикислоты и а-аминокислоты ь-конфигурации обладают положительным эффектом Коттона вблизи 215 нм, тогда как их о-энантиомеры проявляют эффект Коттона противоположного знака [216—233]. Таким образом, алифатические аминокислоты обнаруживают специфический эффект Коттона, знак которого отражает стереохимию асимметрического центра. Точная длина волны, при которой проявляется п-> л -эффект Коттона карбоксила, а также его интенсивность изменяются с изменением pH среды. Аминокислоты, исследованные в кислой среде, имеют на кривой ДОВ первый экстремум приблизительно при 225 нм, Хо — около 210—212 нм и второй экстремум в области 195—200 нм. Молекулярная амплитуда зависит от размера алкильных групп. ь-Ала-ннн, наиболее симметричная аминокислота [264—270], имеет наименьшую амплитуду. Изменение алкильной группы при переходе от ь-валина к а-аминомасляной кислоте последовательно увеличивает интенсивность эффекта Коттона [19—21, 264—271]. [c.54]

    К настоящему времени подобраны стационарные фазы, позволяющие разделять методом ГЖХ ГАС практически любого класса и решать самые сложные стрз ктурные проблемы, вплоть до установления оптической конфигурации молекул (например, аминокислот [164], изоирепоидных жирных кислот и их эфиров [269]. Получены необходимые для идентификации экспериментальные данные по параметрам удерживания характерных для нефтей летучих ГАС, в том числе тиолов [270], диалкилсульфидов [271], тиацикланов [272], аминов [273, 274], производных пиридина и хинолина [274—276], свободных жирных [277] и ароматических [278] кислот и их метиловых эфиров, фенолов [279, 280], кето-нов [281], спиртов [282] и т. д. Выведены корреляции между хроматографическим поведением и строением ГАС отдельных типов. Надежность идентификации чисто газохроматографическими средствами можно значительно повысить путем изучения так называемых спектров хроматографического удерживания [283]. На основе характеристик удерживания идентифицирован, например  [c.34]


    Абсолютная конфигурация аминокислот. После того как работы Куна и других исследователей на основании теоретических представлений, связанных с явлением вращательной дисперсии (стр. 427), и в особенности работы Бийво по рентгеноструктурному анализу (1956) привели к установлению абсолютной конфигурации винной кислоты, а отсюда и многих углеводов, очередной задачей стало установление конфигурационной связи между аминокислотами и этими соединениями. [c.368]

    Это позволило определить строение аминокислоты, из которой получен данный метилтиогидантоин. Новые сведения о порядке чередования аминокислотных остатков в коротких пептидах были получены па основанни исследоваиия масс-спектров этиловых эфиров ацетилпептидов, аминоспиртов и диаминоспиртов [208, 209]. В работе Н. К. Кочеткова и сотрудников масс-спектрометрический метод использовался для определения размера цикла в метиловых эфирах моносахаридов [210], установления конфигураций гликозидной связи в метилглюкозидах [211] и выяснения места свободного гидроксила в частично метилированных моносахаридах [212, 213]. [c.124]

    Впервые рентгенографический метод определения абсолютной конфигурации был применен к винной кислоте. Это сделали в 1951 г. Бийо, Пирдмен и Ван-Боммель в той самой лаборатории, в которой в прошлом веке работал Вант-Гофф. За два десятка лет, прошедших со времени открытия рентгеноструктурного метода определения абсолютной конфигурации, таким путем установлены конфигурации около двухсот оптически активных веществ — среди них и органические вещества, и оптически активные комплексные соединения. Сводка этих данных имеется в работах [12]. К числу веществ с установленной абсолютной конфигурацией относятся различные оксикислоты, аминокислоты, терпеноиды, стероиды, алкалоиды,сахара, например  [c.186]

    Аминокислоты в свою очередь послужили основой для установления конфигураций других, более простых азотсодержащих соединений—аминов. Работами Лейте в 1931 г. была установлена конфигуративная связь а-фенилэтиламина с аланином  [c.193]

    Особенно удобным реактивом для установления конфигу-ративной связи аминокислот и аминов (а также оксикислот и спиртов) является алюмогидрид лития. С помощью этого реактива легко осуществить превращение аминокислот в амины. В качестве примера приведем определение конфигурации. [c.193]

    После установления абсолютной конфигурации молочной кислоты на основании расчета дисперсии вращения (Кун, 1935 г.) и винной кислоты с помощью рентгеноструктурного анализа (Бийвй, 1951 г.) нужно было установить однозначные стерические связи природных аминокислот с этими гидроксикислотами. Это удалось Ингольду и др. в 1951 г. они осуществили перевод о(-I-)-бромпропионовой кислоты в ь(-I-)-молочную кислоту и в ь(- -)-аланин. Эти превращения протекают по 8 2-механизму, и, как показано кинетическими исследованиями, обусловливают обращение конфигурации у асимметрического атома углерода. Таким образом была однозначно установлена абсолютная конфигурация аминокислот. [c.28]

    Если белки в чем-то и проявляют общность в химическом поведении, позволяющем отнести их к одному классу веществ, то это только по отношению к протеолитическим ферментам. Подробно о становлении и развитии энзимологии, а также о механизме ферментативного расщепления белков говорится в следующем томе настоящего издания. Сейчас важно отметить, что в рассматриваемый период в этой области произошли глубочайшие изменения. Обратим внимание лишь на два события, которые оказали решающее влияние на изучение химического строения белковых молекул. Первым из них явилось установление Дж. Самнером (1926 г.) и Дж. Нортропом (1930 г.) белковой природы ферментов, что привело к совмещению задач химического и пространственного строения последних с задачами остальных белков. Второе событие заключалось в строгом доказательстве Э. Вальдшмидт-Лейтцем (1930-е годы) исключительно аминокислотного состава белкового гидролизата, полученного при дробном ферментативном гидролизе, т.е. комбинированном действии представительного набора ставших известными к тому времени протеолитических ферментов. Э. Вальдшмидт-Лейтц показал, что белки являются линейными полипептидами, звенья которых состоят из двадцати стандартных аминокислот с -конфигурацией центрального углеродного [c.66]

    Паттерсон и Броуд [211] в результате исследования ряда природных аминокислот при 660—440 ммк установили некоторые общие положения, которые могут быть использованы для установления конфигурации. Гринстейн и сотр. [134, 135, 209] продолжили эти исследования и изучили оптическое вращение 42 /-аминокислот в диапазоне длин воли 589—365 нмк- [c.279]

    Медные комплексы аминокислот. Прекрасный пример установления конфигурации по кривым с эффектом Коттона содержится в классических исследованиях Пфейфера и Кри-стелейта [215, 216], посвященных аномальной дисперсии вращения окрашенных в голубой цвет медных комплексов аминокислот, которые поглощают в видимой части спектра. Авторы установили, что три группы природных аминокислот, генетическая связь которых в то время еще не была установлена, дают кривые дисперсии одного и того же общего типа, и сделали вывод об одинаковой конфигурации изученных кислот у а-углеродного атома. Кривые дисперсии вращения медных комплексов /( + )- и < (—)-валина и (—)-фенилаланина, полученные Пфейфером и Кристелейтом, показаны на рис. 12. [c.336]

    Еще одной важной проблемой в стереохимии природных соединений является установление строения полипептидных антибиотиков, продуцируемых бактериями и грибами. Такие полипептиды часто содержат в своей структуре неприродные аминокислоты, т. е. имеющие в-конфигурацию или обладающие структурой, не обнаруженной в белках. Очистка и установление структуры таких сложных соединений, часто вьщеляемых в очень небольших количествах, требует квалифицированного разделения и точных аналитических методов. В этом отнощении исключительно важным является непосредственное определение конфигурации аминокислот методом хиральной хроматографии. Особенно большое значение имеет применение хиральной ГХ для хирального аминокислотного анализа и создания аминокислотных карт гидролизатов. Приведенный ниже пример [24] должен проиллюстрировать сказанное. [c.182]

    Для установления конфигурации Са в 2-амино-2-дезоксисахарах обычно используют следующий призм подвергают окислению йодной кислотой или тетраацетатом свинца какое-либо ациклическое производное исследуемого N-ацетиламиносахара, а фрагмент, содержащий ацетамидо-группу, окисляют до соответствующей аминокислоты, которую идентифицируют подходящим методом. Так, при окислении 2-ацетамидо-1,2-дидезокси-D- opOHTa XLIV, полученного из диэтилмеркапталя N-ацетил- )-глюкозамина обессериванием скелетным никелем, образуется альдегид XLV, содержащий асимметрический атом, конфигурацию которого и предстоит определить. При окислении этого альдегида с последующим гидролизом был получен L-аланин .  [c.282]

    В отличие от химии белков и нуклеиновых кислот, где определение первичной структуры сводится к установлению последовательности аминокислот или нуклеиновых оснований в линейной цепи биополимера, в случае углеводных биополимеров задача существенно усложняется. Для выяснения строения олигосахарида необходимо определить его моносахаридный состав, последовательность моносахаридных остатков и места разветвления олигосаха-ридной цепи, места присоединения моносахаридных остатков друг к другу, размеры циклов моносахаридных звеньев, конфигурацию гликозидных связей. [c.463]

    Вероятно, самым простым и элегантным методом установления абсолютной конфигурации является метод образования квазирацематов, который был изучен и развит Фредга. Подробный обзор по этому методу был опубликован [418], и поэтому достаточно напомнить, что этот метод основан на образовании молекулярных соединений в соотношении 1 1 между изостерами. Такие квази-рацемические соединения легко обнаруживаются по диаграмме плавления, имеющей максимум при соотношении 1 1, если два изостера имеют противоположную абсолютную конфигурацию. Используя этот метод, удалось провести корреляцию многих терпенов и аминокислот. [c.701]

    При установлении конфигурации аминокислот их принято сравнивать с - и Д-молочными кислотами, конфигурации которых установлены по и О-гляцериновым альдегидам (см. стр. 591). [c.779]

    Обе реакции проводились с изучением кинетики оказалось, что они протекают по типу 5n2, следовательно, в каждой из них происходило обращение конфигурации. Азидопропионовая кислота была каталитически восстановлена в (+)-аланин (ХС)—при этой реакции, по-видимому, конфигурация не изменяется. Поскольку для молочной кислоты еще ранее была классическими методами найдена корреляция с глицериновым альдегидом (стр. 168), а для аланина—с серином, исследованные реакции позволили установить непосредственную связь между стандартной конфигурацией (1) ДЛЯ (+)-глицеринового альдегида и стандартной конфигурацией II для природного (—)-серина оба стандарта оказались эквивалентными, и установленные ранее конфигурации, аминокислот, сводимые к серину, заменяются также конфигурациями сводимыми к глицериновому альдегиду. , - [c.181]

    Так же как для углеводов, буквы I и й (или Ь я О) обозначают принадлежность данной формы аминокислоты к I- или -ряду, а знаки (-)-) и (—) указывают направление вращения. За исходное соединение, со строением которого принято сравнивать строение аминокислоты, условно принимают I- и -молочные кислоты конфигурации этих кислот в свою очередь установлень по I- и -глицериновым альдегидам (стр. 536 сл. и 694). [c.670]

    Установление строгой корреляции между координационным окружением, d-электронной конфигурацией металла и пептидазной активностью в настоящее время затруднено из-за неопределенности в стереохимии координации Ni(II)-зaмeщeннoгo фермента. Поскольку эффективность гидролиза пептидов отражает многочисленные кинетические и структурные факторы, такие, как координация карбонильного атома кислорода ионом металла, присоединение субстрата к боковым цепям аминокислот в области активного центра, доступность молекулы растворителя, ингибирование субстратом и продуктом, и все эти факторы могут по-разному зависеть от искажений, вызванных замещением иона металла, могут быть рассмотрены только некоторые основные свойства гидролиза [c.92]

    Особенно удобным реактивом для установления конфигура-тивной связи аминокислот и аминов (а также оксикислот и карбинолов) оказался литийалюминийгидрнд. С помощью этого реактива можно легко осуществить превращение аминокислот в амины. В качестве примера приведем выполненное в 1953 г. Кар-рером определение конфигурации аминов жирного ряда  [c.248]


Смотреть страницы где упоминается термин Конфигурации установление аминокислот: [c.180]    [c.495]    [c.235]    [c.110]    [c.192]    [c.253]    [c.11]    [c.253]    [c.134]    [c.245]   
Органическая химия. Т.2 (1970) -- [ c.651 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.637 ]




ПОИСК







© 2025 chem21.info Реклама на сайте