Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Открытие микроорганизмов

    При циркуляции в системе часть воды испаряется в градирнях, с поверхности открытых прудов и очистных сооружений, ири удалении шламов и осадков, теряется в результате участия в химических реакциях, подвергается различным физико-химическим воздействиям, в том числе упариванию, в результате чего в ней увеличивается концентрация солей и накипеобразующих соединений. При многократном использовании в воде накапливаются механические взвеси, различные коррозионно-агрессивные соединения и микроорганизмы. Все это вызывает интенсивное отложение накипи и коррозию конденсационно-холодильного оборудования, ухудшает теплопередачу. Из-за увеличения содержания в воде солей, в том числе солей кальция и МУ гния, других примесей требуются вывод части воды и замена ее свежей. С этой целью осуществляют так называемую подпитку, или продувку системы. Взамен сброшенной из водоема забирают свежую воду. Покрыть потери оборотной воды можно за счет бытовых сточных вод, а также дождевых и паводковых вод после предварительной их подготовки. [c.84]


    Химизм спиртового брожения. Уже задолго до изобретения первого микроскопа и открытия микроорганизмов люди знали и использовали в своем питании продукты спиртового брожения. В истории многих древних народов описывается вино, древние египтяне употребляли также и пиво. Спирт был получен гораздо позже, так как было необходимо научиться отделять его от продуктов брожения. Спиртовое брожение лежит в основе многих отраслей промышленности, ибо все алкогольные напитки являются продуктами брожения. [c.138]

    Когда было сделано открытие о способности микроорганизмов усваивать углеводы нефти и когда микробиологическая промышленность стала самостоятельной отраслью народного хозяйства  [c.285]

    Наконец, следует отметить, что многие из принципов и концепций, выдвинутых при изучении каталитической активации водорода, применимы также к другим инертным молекулам, в том числе к азоту и углеводородам. Эти вещества инертны почти по тем же самым причинам, что и водород, и следует ожидать, что каталитические свойства, требуемые для их активации (по-видимому, более сильные, чем свойства катализаторов гидрогенизации), будут зависеть от аналогичных факторов. До настоящего времени только твердые тела использовались в качестве катализаторов для реакций азота и насыщенных углеводородов, однако имеются все основания ожидать, что, подобно тому как было в случае водорода, дальнейщие исследования приведут к получению гомогенных катализаторов, способных активировать эти молекулы. Открытие микроорганизмов и ферментов, связывающих азот при низких температурах, свидетельствует о больших возможностях в этой области исследования. [c.407]

    Источниками белковых продуктов служат главным образом отрасли сельского хозяйства (животноводство,. птицеводство, земледелие), а также рыболовство и др. Производство их требует огромных затрат труда, обширных земель, зависит от природных условий. Новые и весьма перспективные методы промышленного получения белка микробиологические. Открыты микроорганизмы (дрожжи), развивающиеся на углеводородах некоторых фракций нефти и дающие полноценную белковую массу — белково-витаминный концентрат (БВК), богатый витаминами группы В, У нас производством БВК на нефти занимается особая отрасль индустрии — микробиологическая промышленность (см.). Таким образом, белок может быть получен не в сельском хозяйстве, а на заводах. Например, продукция завода, вырабатывающего в сутки около 30 т белковой массы, содержащей приблизительно 15 т белка, по белковой ценности эквивалентна количеству мяса, получаемого от стада быков в 50 ООО голов. Нока белок из нефти применяется в качестве корма для сельскохозяйственных животных. Но он несомненно может быть использован и в производстве пищевых продуктов для человека в этом направлении ведутся широкие исследования. [c.339]


    Сернистые соединения с открытой цепью углеродных атомов, по-видимому, все имеют вторичный характер. Незначительная роль их в нефти по сравнению с высокомолекулярной частью, содержащей серу, внедренную в циклические системы, позволяет рассматривать последние как первичную форму сернистых соединений, образованных углеводородами или другими органическими веществами, пришедшими во взаимодействие с серой. Следовательно, должен существовать какой-то источник серы, который бы мог обеспечить позднейшие реакции с углеводородами. Этот источник серы чаще всего видели в процессе восстановления сульфатов, сопровождающих многие нефтяные месторождения, главным образом в виде гипса. Предполагалось, что при взаимодействии с углеводородами возможно восстановление сульфатов с образованием углекислого газа, сероводорода и воды. Эта реакция, известная в технике в виде содового процесса, по Леблану, идет однако только при высоких температурах, нереальных в нефтяных месторождениях. Затем были открыты различные бактерии, которые при обыкновенной температуре и без доступа воздуха могут восстанавливать сульфаты до сульфидов, гидросульфидов и сероводорода. Механизм этой реакции понимается таким образом, что микроорганизмы, нуждающиеся в кислороде для создания живого вещества бактерий, заимствуют необходимый им кислород из сульфатов, переводя их в различные сульфиды, дающие с водой сероводород и кислые сульфиды по уравнениям  [c.178]

    Мир микроорганизмов во всем его разнообразии еще далеко не познан. Данные, полученные с помощью методов молекулярной биологии (амплификация, разделение и сиквенс генов, кодирующих 168 рРНК) в изучении распространения микроорганизмов, позволяют утверждать, что человек способен культивировать лишь менее 1 % всех микроорганизмов, живущих на Земле. Если скорость идентификации новых видов будет оставаться на современном уровне, то для описания и классификации всех животных понадобится 30 лет, всех растений — 50 лет, а всех микроорганизмов — 10 тыс. лет В связи с этим перед микробиологами стоит задача ускорения вьщеления, идентификации и классификации новых, еще не открытых микроорганизмов, для скорейшего завершения познания биологического разнообразия микробов на Земле. [c.5]

    Процессы биологического разрушения загрязнений происходят как в открытых акваториях, так и в грунтовых водах и почвах как в аэробных, так и анаэробных условиях. Разрушение происходит под действием микроорганизмов, в результате поглощения зоопланктоном, усвоения морскими животными. Полное биоразложение под действием микроорганизмов в естественных условиях протекает весьма медленно — от 10—25 лет до нескольких столетий. [c.81]

    В море, а также частично и в открытой атмосфере сказывается влияние продуктов жизнедеятельности микроорганизмов они снижают pH и тем самым усиливают процесс разрушения металла в щелях. Скорость коррозии в щелях зависит от состояния поверхности металлов. Наличие органики в щелях уменьшает концентрацию кислорода, необходимого для пассивации металла. Наиболее сильному разрушению при щелевой коррозии подвергаются металлы, пассивное состояние которых наиболее сильно зависит от влияния окислителей (к таким металлам относятся в основном нержавеющие стали и алюминиевые сплавы [89]). [c.87]

    ХУП-ХУП1 вв. для этого были критическими. Что же произошло в 1700 г. или, точнее, в период 1650—1800 гг История не отмечает сколько-нибудь заметных качественных изменений окружающей человека среды. Ответы на этот вопрос более или менее очевидны. Это был период становления современной науки, создававшей основы промышленной революции. В эти годы были заложены основы современной математики и механики, химии и биологии. Созданы основы дифференциального и интегрального исчисления, заложены основы механики, термодинамики, открыты законы электричества, идентифицированы и описаны многие химические элементы. Открыты микроорганизмы, созданы первые тепловые машины, заложены основы современных методов преобразования энергии. В эти годы жили и творили Ньютон, Лейбниц, Кулон, Карно, Левенгук, Ломоносов, Кавендиш, Фарадей, Ом и другие ученые. Были заложены основы естествознания в современном понимании этого слова. Ученые этого периода — истинные герои человечества, обеспечившие своими трудами возможности его дальнейшего популяционного скачка. Фактически 90% в настоящее время живущих людей обязаны им своим рождением и существованием на Земле. Если ли бы не произошло популяционного перехода, численность популяции людей составляла бы всего лишь 300—500 млн. [c.681]

    Различают следующие виды экосистем — открытые, т,е. способные к свободному обмену веществом, энергией и информацией с окружающей средой, частично открытые и закрытые, т.е, полностью зависящие от человека, Человек в этом случае берет на себя функции управления экосистемой и поддержания ее жизнедеятельности (например, агроценозы, аэро-тэнки с микроорганизмами в системах биологической очистки сточных вод). [c.407]

    Вслед за работа.ми Пастера появились труды немецкого ученого микробиолога Роберта Коха (1843—1910). Ему окончательно удалось доказать, что заразные болезни вызываются различными болезнетворными бактериями. Кроме того, он указал приемы борьбы с распространением этих бактерий, которые легли в основу так называемой дезинфекции. Кохом были открыты возбудители туберкулеза, холеры, введены в практику микробиологических исследований плотные питательные среды, при помощи которых можно получать чистые культуры микроорганизмов. [c.240]


    II существование анаэробиоза, т. е. способности микроорганизмов получать необходимую им энергию для жизнедеятельности путем брожения без доступа кислорода воздуха. Одним из самых веских оснований, которые послужили Пастеру в его непоколебимой уверенности, в его выводах об особом уровне материальной организации ферментов, является открытая им строгая стереоспецифичность живой природы. Но, как известно, и эти основания были если не отвергнуты, то отодвинуты на задний план открытием внеклеточного брожения, а позиция Пастера была объявлена виталистической. [c.178]

    Открыта закономерность заселения материалов конструкций техники одними и теми же видами микроорганизмов независимо от климатической зоны при идентичных условиях эксплуатации сооружений. Сведения о таких видах грибов представлены в табл. 12. [c.52]

    Эта реакция часто протекает в природных условиях. Если вино, содержащее этиловый спирт, оставить в открытой бутылке, оно подвергается уксуснокислому брожению и превращается в уксус по реакции, уравнение которой приведено выше. Изменения вызываются микроорганизмами, которые выделяют ферменты, катализирующие реакцию. [c.236]

    Сущность этого способа заключается в том, что микроорганизмы планктона и водоросли, поглотившие радиоактивные частицы, постепенно погибают и падают на дно водоема. В результате этого процесса образуется ил, в котором и концентрируются радиоактивные загрязнения. Наиболее энергично поглощают такие частицы зеленая хлорелла, диатомитовые и другие водоросли. Наряду с этим аэробные бактерии окисляют вещества, загрязняющие воду, и продукты окисления, содержащие радиоактивные элементы, также выпадают в осадок. Примерная схема такого способа очистки показана на рис. 19. Загрязненные воды радиохимической лаборатории или экспериментального ядерного реактора сбрасываются в первый пруд, из пего перетекают во второй и т. д. Вода из последнего пруда может направляться на повторное использование или, если содержание в ней радиоактивных элементов не превышает СДК, сбрасываться в реку или открытый водоем. [c.74]

    В середине двадцатого века антибиотики произвели настоящую революцию в медицине — их открытие, начатое с пенициллина, позволило решить некоторые кардинальные, ранее неразрешимые проблемы лечения ряда заболеваний, в первую очередь — инфекционных и воспалительных процессов. Здесь следует упомянуть, как великую заслугу этой группы лекарств, высокую эффективность лечения ими таких заболеваний как пневмония, бруцеллез, брюшной тиф, азиатская холера, чума, некоторые формы туберкулеза. Но при всем при этом, они, конечно же, тоже не панацея — одной из проблем, связанной с антибиотиками в медицине, является быстрое накопление форм микроорганизмов, резистентных к этим веществам, что приводит к неэффективности используемых препаратов и необходимости замены их новыми антибиотиками. [c.291]

    Влияние температуры. Проявление жизненной активности у микробов чаще всего протекает в интервалах температур от О до 80° С, а для огромного большинства бактерий — от 3 до 45° С. (В последнее время открыты микробы, выдерживающие температуру вьгще 100° С.) По отношению к температуре микроорганизмы делятся на три группы  [c.284]

    Приоритет в открытии микроорганизмов принадлежит голландскому натуралисту-любителю Антонио Левенгуку (1632— 1723). Торговец полотном А. Левенгук увлекался шлифованием стекол и довел это искусство до совершенства, сконструировав микроскоп, позволивший увеличивать рассматриваемые предметы в 300 раз. Изучая под микроскопом различные объекты (дождевую воду, настои, зубной налет, кровь, испражнения, сперму), А. Левенгук наблюдал мельчайших животных , которых он назвал анималькулюсами . Свои наблюдения А. Левенгук регу- [c.11]

    Хотя появление болезней и связывалось с теперь уже открытыми микроорганизмами, однако необходимы были прямые доказательства. И они были получены русским врачом-эпидемио-логом Д. Самойловичем (1744—1805). Чтобы доказать, что чума вызывается особым возбудителем, он заразил себя отделяемым бубона больного чумой человека и заболел чумой. К счастью, Д. Самойлович остался жив. Впоследствии героические опыты по самозаражению для доказательства заразности того или иного микроорганизма провели русские врачи Г. Н. Минх и О. О. Мо-чутковский, И. И. Мечников и др. [c.12]

    Тепловыми источниками зажигания могут быть открытое пламя, электрическая искра или дуга, искры, образующиеся при треиии или ударе, несгоревщие частицы топлива, повышение температуры горючей смеси, образовавшееся при химических процессах, соприкосновение с нагретыми поверхностями и др. Источником горения могут также явиться химические и микробиологические процессы, происходящие в веществе при обычных температурах с выделепием тепла. Химический импульс, вызывающий нагревание вещества, оказывает действие только тогда, когда это вещество находится в контакте с горючим (например, воспламенение древесных опилок при действии на них крепкой азотной кислоты, загорание глицерина, этилеигликоля при взаимодействии с марганцевокислым калием и др.). Ири микробиологических процессах зажигание происходит только в том случае, если горючее вещество служит питательной средой для жизнедеятельности микроорганизмов (иаиример, самовозгорание фрезерного торфа), [c.146]

    Для смазывания часовых механизмов и аналогичных им приборов применяются специальные масла и смазки. В табл. 12. 31 приведены основные смазочные масла и их свойства. Для часовых механизмов, работаюш их в обычных условиях, применяются масла МПБ-12, МЗП-6, МЦ-3 и МЧМ-5 для механизмов, работаюш их на открытом воздухе в условиях низких температур, — масла МН-30, МН-45 и МН-60. Для часов, предназначенных для работы в странах с тропическим климатом, используются масла МЧТ-3 и МПТ-3, которые содержат антисептическую присадку, предотвраш аюшую развитие в них спор различных грибковых организмов и микроорганизмов (бактерий). Эти масла испытываются на влагоустойчивость и химическую стабильность по методике, приведенной в ГОСТ 7934—56. [c.703]

    После открытия способности микроорганизмов ассимилировать углеводороды прошло более полувека, прежде чем биологи перестали счрггать эти процессы микробиологической экзотикой[149]. И лишь в последние 15-20 лет появилась убежденность, что это свойство ш1фоко распространено а мире микробов. Стало общепризнанным фактом, что микроорганизмы в состоянии сравнительно легко превращать молекулы углеводородов - веществ, весьма устойчнвы. к действию химических реагентов. [c.84]

    Использование известных почвообразующих технологий в условиях нарушенных горными работами земель Подмосковного бассейна малоэффективно и затруднено тем, что подлежащие рекультивации участки сложены вскрышными породами, содержащими до 10% серы при кислой реакции почвогрунтов (pH = 2,5-2,6). В Подмосковном бассейне, вследствие особенностей технологии открытого способа добычи угля, существуют участки, где отсутствуют запасы предварительно снятого и за-складированного почвенно-растительного слоя для восстановления плодородия нарущенных земель. Для такого рода участков необходимы разработки экологически и экономически выгодного способа восстановления земель. В качестве такового предложен для проверки способ, основанный на применении комплекса активных штаммов почвенных микроорганизмов, мобилизующих потенциальное плодородие отработанного субстрата и способствующих накоплению в нем органического вещества и элементов питания в доступной для высших растений форме. [c.165]

    Следует учесть, что гфиродная вода представляе собой многофазную гетерогенную систему открытого типа, обменивающуюся веществами и энергией с другими средами (водные объекты, атмосфера, донные отложения) и с се биологической составляющей. Кроме того, в природной воде присутствует множество взвешенных твердых частиц и микропу-зьфьков газов. Обычно их общее число составляет К) - 10 шт/л 29 . Помимо них толща воды пронизана микроорганизмами, о(>разующими биоту, которая находится в динамическом равновесии с внешней средой и представлена совокупностью гидробионтов Все эти факторы играют важную роль в формировании качества поверхностных вод и их способности к самоочищению. [c.125]

    С, Н. Виноградский сыграл большую роль в развитии микробиологии. Им были изучены серобактерии (1887), железобактерии (1888) и нитрифицирующие бактерии (1890), исследования которых дали результаты важного научного значения. Эти бактерии обладали способностью развиваться на сре.аах, не содержащих органических веществ, и синтезировать составные части своего тела за счет углерода угольной кислоты. Необходимую энергию эти бактерии получают за счет биохимических процессов, протекающих при окислении азота аммонийных солей в нитриты и нитраты, или за счет окисления двухвалентного железа в трехвалентное. Такой своеобразный процесс синтеза органического вещества из угольной кислоты 1 воды назьпзается хемосинтезом. Это явилось кр 1шспшим открытием в области физиологии микроорганизмов. [c.241]

    Период быстрого развития химиотерапии начался с открытия Герхардом Домагком сульфамидных препаратов. В 1935 г. Домагк нашел, что пронтозил, являющийся производным сульфаниламида, обладает активным лечебным действием при инфекционных заболеваниях, вызываемых стрептококками. Другие исследователи вскоре установили, что сам сульфаниламид (белый стрептоцид) является столь же эффективным средством лечения этих заболеваний и что такие препараты можно принимать внутрь. Формула сульфаниламида приведена на рис. 14.11. Сульфаниламид эффективен против стрептококков, обладающих так называемыми гемолитическими свойствами (способностью разрушать эритроциты), а также против менингококковых инфекций. После того как сульфаниламид получил признание, химики синтезировали сотни родственных ему веществ исследовали их эффективность в качестве бактериостатических агентов, т. е. веществ, способных прекращать распространение инфекции. Было установлено, что многие из этих соединений обладают денными свойствами в настоящее время сульфамидные препараты прочно вошли в медицинскую практику. Обнаружено, что сульфапиридин является лечебным средством при пневмонии, вызываемой микроорганизмами пневмококками, а также при других пневмококковых заболеваниях и гонорее. Сульфатиазол применяют при лечении как перечисленных выше болезней, так и болезней, вызываемых стафилококками, которые, в частности, являются причиной карбункулов и нарывов. Упомянутые выше и другие сульфамидные препараты являются производными сульфаниламида, получаемыми замещением одного из атомов водорода амидной группы (группы NH2, связанной с атомом серы) некоторыми другими группами (рис. 14.11). [c.423]

    Третий путь к освоению приемов , которыми пользуется живая природа в своих лабораториях in vivo, состоит в значительных, причем полученных в самые последние годы, достижениях химии иммобилизованных систем. Как было уже сказано, энзимология давно уже накопила информацию об уникальных качествах биокатализаторов. Но вместе с тем она указала и на их крайнюю лабильность, неустойчивость при хранении и быструю потерю активности при перенесении в реакционные системы, функционирующие in vitro. Ведь именно поэтому техническая биохимия не могла пойти далее нескольких ограниченных областей промышленности, где применяются преимуп ественно гидролитические ферменты, выделяемые микроорганизмами. Эти области — производство вин, пива, чая, хлеба и некоторых других пищевых продуктов, обработка кожи. Все попытки использовать богатейший набор ферментов, которым располагает природа, для осуществления лабораторных и промышленных процессов наталкивались на, казалось бы, неразрешимые проблемы 1) трудную доступность чистых ферментов и их непомерно высокую стоимость 2) их нестабильность при хранении и транспортировке 3) быстро наступающую потерю их активности в работе, даже если удалось их выделить и пустить в дело. Но теперь оказалось, что эти проблемы удается решить. Благодаря успехам микробиологической промышленности стало возможным получать многие ранее трудно доступные или недоступные ферменты по ценам в 100—1000 раз ( ) ниже цен на ферменты растительного и животного сырья. Но, главное, теперь открыты пути стабилизации ферментов, и именно это обстоятельство стало основанием химии иммобилизованных систем, или биоорганического катализа . Сущность этого открытия и всех последующих исследований, направ- [c.184]

    Фотохимические реакции присоединения кислорода важны во многих фотосенсибилизированных процессах окисления ненасыщенных соединений. Биологические аспекты фотосенсиби-лизированного окисления известны с 1900 г., когда было открыто, что присутствие кислорода и сенсибилизирующих красителей могут вызывать гибель микроорганизмов. Патологические эффекты фотоокисления компонентов клетки включают повреждение клетки, мутагенез или онкогенез и летальный исход. Последние исследования фотосенсибилизированного окисления позволили лучше понять механизмы химических процессов, а полученные результаты находят теперь применение в области биологии. Логично закончить настоящую главу описанием этих очень важных реакций фотоокисления. [c.173]

    В связи с тем, что загрязнение воды ПАВ в комбинации с другими соединениями имеет широкое распространение, охватывая многочисленные водоемы страны, факт усиления токсичности последних имеет, несомненно, важное гигиеническое значение. Так, на практике при попадании в воду относительно большого количества химических загрязнителей присутствие ПАВ значительно увеличивает опасность как острого, так и хронического отравления. В опытах показана также возможность синергических эффектов при действии на запах (привкус) воды комбинации различны.к веществ с ПАВ. Результаты модельных исследований позволили выяснить определенные закономерности в процессах выноса загрязнений из почвы атмосферными осадками и поливными водами в водные объекты, а также сорбции их песчаными грунтами в процессе фильтрации воды,- содержащей комбинации веществ. Установлено, в частности, что ПАВ увеличивают почвенный транспорт ряда соединений, изменяя условия адгезии и сорбции их. При значительном суммарном загрязнении открытых водоемов, в зависимости от химической природы веществ, может наблюдаться заметное ухудшение кислородного режима. Установлено, что ПАВ существенно замедляют динамику трансформации ряда реагентов, отличающихся незначительной или умеренной стабильностью. Так, время полу-разложения симазина, аммиачной селитры и аммофоса в присутствии хлорного сульфонола составляло соответственно 3,9 23,0 и 33,0 суток против 2,И 18,0 и 23,0 суток в контрольной пробе. Неблагоприятные последствия комбинированного загрязнения воды комплексом веществ в присутствии ПАВ связаны также с ухудшением условий самоочищения водоемов от энтеропатогенных микроорганизмов. В частности, в комплексе с аммиачной селитрой хлорный сульфонал обусловливал подавление сапрофитной микрофлоры и стимулировал развитие Salmonella typhymurium и энтеровирусов (52). [c.92]

    Многие виды микроорганизмов выделяют вещества, которые Офаничивают рост микроорганизмов других видов или убивают их. Эти вешества, названные антибиотиками, могут быть также продуктами жизнедеятельности высших растений и животных и являются как бы химическими средствами зашиты. К настоящему времени известно более 10 тысяч природных и синтетических антибиотиков и уже более ста из них применяют в медицине, а также в сельском хозяйстве для защиты растений и животных от болезней. Их общее производство во всем мире превышает 50 тыс т в год. Большинство антибиотиков имеет весьма сложную структуру. Их история начинается с первого наблюдения гибели стафилококковых бактерий при контакте с зеленой плесенью Peni illium (1929 г ) и последующего выделения из нее действующего начала - пенициллина (1940 г.). Во время второй мировой войны пенициллин использовался в больших масштабах, хотя его строение было установлено лишь в 1945 г. с помощью рентгеноструктурного анализа Для ученых казалось невероятным, что этот антибиотик содержал четырехчленный р-лактамный цикл, так как в то время считали, что азетидиновые циклы чрезвычайно неустойчивы. Оказалось, однако, что именно этот гетероцикл является ответственным за антибиотическое действие не только пенициллина, но и целого ряда других, открытых много позднее групп природных и полу-синтетических антибиотиков  [c.79]

    Под названием антибиотики , или антибиотические вещества , понимают продукты обмена организмов, способные избирательно подавлять или убивать микроорганизмы (бактерии, дрожжи, грибы, вирусы и др.). На протяжении последних 20 лет антибиотики привлекли к себе внимание в качестве лекарственных средств в связи с их эффективным действием в отношении таких заболеваний, как туберкулез, пневмония и ряд других, против которых ранее не существовало радикальных средств борьбы. Поводом к изучению антибиотиков послужило открытие лечебных свойств тиротроцина в 1939—1940 гг., представляющего собой смесь нескольких полипептидов. Препарат этот оказался эффективным в отношении грамположительных бактерий как in vitro, так и in vivo и получил применение для лечения ран, ожогов и некоторых заболеваний уха, носа и горла. [c.686]

    В результате непрерывно развивающихся поисков новых антибиотиков открыто значительное их количество (более 1200), и явилась необходимость их классификации. Однако, несмотря на несомненную важность последней, пока еще нет общепринятой классификации. Некоторые исследователи склонны классифицировать антибиотики по их биологическому происхождению, т. е. антибиотики из растений, из бактерий, из грибов, актино-мицетов и пр. Такая классификация имеет ряд существенных недостатков близкие или идентичные антибиотики образуются часто различными микроорганизмами. Кроме того, при классификации по данному признаку многие вещества, сходные по строению, биологическим и химическим свойствам, попадают в разные группы напротив, вещества, не имеющие ничего общего ни по биологическим свойствам, ни по строению, нередко образуются одними и теми же или сходными продуцентами и вследствие этого должны быть отнесены в одну группу. [c.687]

    Рассматривая лишь антибиотики, разрешенные Фармакологическим комитетом Министерства здравоохранения СССР для применения в медицине, и препараты, их содержащие, остановимся на антибиотиках из высших растений, активных в отношении грамположительных и грамотрицательных микроорганизмов и принадлежащих к открытым Б. П. Токиньш (1928) летучим защитным веществам растений — фитонцидам. [c.688]

    С этой целью брали стерилизованные чашки Петри с питательной средой МПБ (мясо-питательный бульон). На поверхность образца пипеткой наливали по 5 стерильной дистиллированной воды, которая, стекая, собиралась в чашки Петри. Чашки были помещены в термостат при температуре 35 2°С. Через 24 ч было замечено значительное увеличение роста бакте-риалиных колоний (табл. УП. 3). Из исследуемых полимерных материалов больше всего поселилось бактерий на поверхности пенопласта, находившегося как на открытой площадке, так и в подвальном помещении. Этот материал более других служит питательной средой для микроорганизмов. Бактерий на образцах, помещенных в подвальном помещении, примерно в 2,5 раза больше, чем в открытой атмосфере. Такое своеобразие поселения микроорганизмов объясняется как условиями, в которых они размножаются, так и влиянием метеорологических факторов. В подвальном помещении по сравнению с открытой поверхностью более стабильны влажность и температура воздуха, движение воздушных масс замедлено и поэтому создаются благоприятные условия для жизнедеятельности микроорганизмов. [c.98]

    Важную роль в развитии современной сульфанилами-дотерапии сыграло открытие синергизма сульфаниламидных препаратов и производных диаминопиримидина, в частности триметоприма (V). При этом за счет ингибирования ферментов двух последовательных стадий фолиевого обмена микроорганизмов — дигидрофолатсинтетазы, сульфаниламидами и дигидрофолатредуктазы — диамино-пиримидинами имеет место не только усиление антимикробного действия, но и переход от бактериостатического эффекта к бактерицидному  [c.89]

    Открытие этого класса природных соединений — наверное, самого молодого класса, представляет собой захватывающую, почти детективную историю, начинается которая из медицины. Уже несколько столетий людям, проживающим в прибрежных тропических областях, было известно пищевое отравление при употреблении разнообразных рыб, обитающих в рифовых зонах. Таких рыб более 400 видов, а симптоматика отравления носит название "сигватера (с1диа1ега). При поисках токсического начала этих рыб было установлено, что источником токсина являются динофлагелляты — микроорганизмы (возможно, вид планктона или одноклеточные красные приливы"), которыми питаются рыбы, а также и [c.332]

    В чане П мезга также открыта, однако после заполнения его суслом в нем устаналивается продырявленная деревянная крышка. Обычно крышка состоит из четырех секторов, образующих при монтаже круг, диаметр отверстий в ней — несколько миллиметров. Крышка укрепляется в чане на такой высоте, чтобы сусло покрывало ее на несколько сантиметров. Брожение в таких чанах сопряжено с избыточными потерями спирта и ароматических веществ и в них благоприятны условия для проникновения в сусло патогенных микроорганизмов. Чаны III, IV идентичны чанам [c.129]

    Г. содержится в животных, растениях и микроорганизмах. В бактериях и синезеленых водорослях представлена одной формой, в др. организмах-неск. изоферментами. Долгое время Г. рассматривали как осн. фермент первичной ассимиляции NHj, Низкое сродство Г. к NH , а также открытие глутаматсинтазы, обнаруженной во всех, кроме животных, организмах, свидетельствуют, что роль Г, в ассимиляции NHj незначительна. [c.587]


Смотреть страницы где упоминается термин Открытие микроорганизмов: [c.6]    [c.61]    [c.507]    [c.82]    [c.146]    [c.152]    [c.686]    [c.353]    [c.586]    [c.291]    [c.203]   
Смотреть главы в:

Микробиология Издание 4 -> Открытие микроорганизмов




ПОИСК







© 2025 chem21.info Реклама на сайте