Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотиды пуриновые основания

    Из этих данных следует, что самая характерная часть нуклеотида — пуриновые основания — не находит отражения в спектре сенсибилизированной флуоресценции. Вместе с тем, способностью к флуоресценции обладают простые ионы и радикалы. Кроме того, совпадение спектра излучения глюкозы, наблюдаемого при ее прибавлении к чуждой ей ферментативной системе, со спектром, возникающим в системе глюкоза — зима-за, показывает, что и во втором случае флуоресцируют именно не затронутые ферментативным расщеплением молекулы глюкозы. [c.12]


    Жиры легко и просто синтезируются из элементов, как о том поведал еще в 1840-е годы М. Бертло. Аденин получается из цианида калия, нуклеотиды — из аденина, цитидина, уридина. На основе цианистого водорода, как утверждает М. Кальвин, можно получать любые аминокислоты, пуриновые основания, порфирины. Для придания наибольшей вероятности синтезу блоков, составляющих живой организм, биохимические теории привлекают идеи использования электрических разрядов, развитой поверхиости коллоидных систем, катализ и аутокатализ. [c.188]

    Как уже указывалось, мононуклеотиды состоят из гетероциклического основания, относящегося к ряду пиримидина или пурина, моносахарида и остатка фосфорной кислоты. В настоящей главе будут в самой краткой форме приведены данные, относящиеся к химии двух составляющих нуклеотид компонентов — пиримидиновых и пуриновых оснований и моносахаридов. [c.177]

    Все упомянутые выше пиримидиновые и пуриновые основания выделены из природных нуклеотидов. Наряду с этим в настоящее время известно очень большое число близких им по структуре соединений, полученных синтетически. Наибольшее число исследований посвящено синтезу производных пурина. Цель этих исследований — найти, используя некоторые биологические гипотезы, в частности, принцип антиметаболитов, синтетические аналоги природных оснований обладающие физиологической активностью и пригодные для лечения злокачественных новообразований и инфекционных заболеваний.. [c.179]

    Синтезы пуриновых оснований, пригодные для использования в химии нуклеотидов, можно разбить на две категории 1) частичные синтезы из производных пурина, главным образом из галоидопроизводных и 2) полные синтезы. [c.182]

    Делеция - распад азотистых оснований и выпадение соответствующих нуклеотидов. Выпадение может быть вызвано гидролитическим отщеплением пуринового основания или же его распадом под влиянием pH, температуры, дезаминирующих или окисляющих агентов. [c.53]

    Взаимосвязаны либо только рибонуклеотиды, либо дезокси-рибонуклеотиды, которые образуют соответственно РНК (рибонуклеиновую кислоту) или ДНК (дезоксирибонуклеиновую кислоту). В состав молекулы ДНК входят два пуриновых основания— аденин (А) и гуанин (Г), а также два пиримидиновых основания — цитозин (Ц) и тимин (Т). В молекуле РНК вместо тимина находится урацил (У). Следующие друг за другом три азотистых основания или мононуклеотиды в полинуклеотидных цепях РНК или ДНК образуют триплеты, которые соответствуют какой-либо из аминокислот в молекуле белка, а также определяют ее место в цепи аминокислот, образующих белок. Таким образом, последовательность аминокислот в молекуле белка определяется последовательностью триплетов в молекуле ДНК и РНК Каждый триплет является единицей информации для синтеза белков. Каждая аминокислота кодируется несколькими триплетами. Так, аланин кодируется четырьмя триплетами — АУЦ, ГЦУ, ГЦЦ и ГЦГ. Такая возможность вытекает из того, что число комбинаций из четырех нуклеотидов равно 64 (4 = 64), а аминокислот всего 20. [c.43]


    Нуклеиновые кислоты и нуклеотиды. Нуклеиновые кислоты — важнейшие биоорганические соединения полимерного характера, состоящие из более простых кирпичиков — нуклеотидов. Нуклеотиды включают в свой состав пиримидиновые и пуриновые основания, углеводы и остатки фосфорной кислоты. [c.180]

    Пиримидиновые и пуриновые основания с моносахаридами образуют продукты конденсации — нуклеозиды, которые далее, образуя сложные эфиры с фосфорными кислотами, приводят к нуклеотидам. [c.181]

    Известен другой путь — путь реутилизации пуриновых оснований, образовавшихся в процессе распада эндогенных или экзогенных пуриновых нуклеотидов. По-видимому, эти реакции следует рассматривать как реакции сбережения , использующие пуриновые кольца до их превращения в ксантин и затем в мочевую кислоту перед экскрецией. [c.435]

    Нуклеозиды. Под этим названием 0бъединя 0т соедииения, состоящие нз остатков сахаров и пиримидинов или пуриновых оснований. Они получаются непосредственно из нуклеиновых кислот при действии энзимов из семян люцерны, проросшего гороха и т. д. и, следовательно, образуются в результате отщепления фосфорной кислоты от рассмотренных выше мононуклеотидов. Из инозиновой кислоты таким иутем получается инозин, из адениловых кислот дрожжей и мускулов — один и тот же аденозин, из гуаниловой кислоты — гуанозин, из цитидиловой и уридиловой кислот — цитидин и, соответственно, уридин и т. д. Их фор.мулы вытекают из вышеприведенных формул отдельных нуклеотидов. Все нуклеозиды из нуклеиновой кислоты дрожжей и.меют рибозные остатки в фуранозидной форме. [c.1048]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    Наиболее важными производными пурина являются пуриновые основания — аденин и гуанин, которые входят в состдв нуклеиновых кислот, нуклеотидов, ферментов  [c.324]

    Неизмеримо важную роль в биологии играют производные моносахаридов, называемые нуклеозидами и нуклеотидами. Нуклеозиды— это азотистые аналоги гликозидов, или Ы-гликози-ды, представляющие собой соединение моносахаридного элемента (о-рибозы или 2-дезокси-п-рибозы) с азотистым (пиримидиновым или пуриновым) основанием (разд. 7.6.1)  [c.207]

    При более мягком гидролизе нуклеиновых кислот образуется смесь веществ, называемых нуклеотидами. В состав нуклеотида входят одна молекула пиримидирювого или пуринового основания, одна молекула пентозы и молекула фосфорной кислоты. Таким образом, нуклеотиды являются мономерными единицами нуклеиновых кислот. От нуклеотида можно отщепить фосфорную кислоту и получить нуклеозид, состоящий из пуринового (или пиримидинового) основания и пентозы. [c.348]

    Производные, содержащие систему П., широко распространены в природе и играют большую роль во мн. биол. процессах. Важнейшие производные П.-аденин, гуанин (см. Пуриновые основания), гипоксантин, кофеин (см. также Пуриновые алкалоиды), мочевая кислота. Ядро П. входит в состав нек-рых антибиотиков и нуклеотидов, являющихся структурными фрагментами нуклеиновых к-т. П. и ряд его производных обладают противоопухолевой, противовирусной и противоаллергич. активностью. [c.141]

    В пуриновых основаниях главными компонентами природных нуклеотидов являются аденин (VI) и гуанин (VII) в НК в количестве всего 0,6% найден б-метиламинопурин (Мб-метиладенин) (VIII) и в очень малых количествах обнаружены 2-метил-6-аминопурин (2-метиладенин) [c.177]

    Синтез и свойства всех пиримидиновых и пуриновых оснований, входящих в состав природных нуклеотидов, и методы их синтеза являются общими для всех производных этих гетероциклических систем. Ввиду того, что этот вопрос должен быть хорошо известен читателю из соответствующих разделов органической химии и из специальных монографий, в последующем изложении будут освещены лишь те его стороны, которые имеют особое значение для химии нуклеотадое. В частности, будут рассмотрены только те . методы получения, которые нашли П рим енение в синтетической Х имии нуклеотидов. [c.179]

    Сходным образом может быть получено большое количество самых различных производных пурина. При получении упомянутых выше (стр. 179) многочисленных синтетических антиметаболптов пуринового ряда использованы аналогичные схемы. Этим путем, в частности, могут быть получены и другие пуриновые основания, входящие в состав природных нуклеотидов (стр. 178). [c.182]

    Важной модификацией синтеза Траубе является синтез пуриновых оснований, разработанный Тоддом. Как уже упоминалось при описании синтеза пиримидинов, для химйи нуклеотидов особенно существенно, чтобы все стадии синтеза проходили -в максимально мягких условиях, и поэтому усилия исследователей были направлены на максимальное смягчение условий синтеза. Метод Тодда на примере синтеза аденина изображается схемой [c.184]


    Из химических свойств пуриновых оснований, представляющих особый интерес для химии нуклеотидов, нужно отметить те же, которые-указаны выше при рассмотрении свойств производных пиримидина. Окси- и аминозамещенным пуринам свойственна, хотя и в меньшей степени, двойственная реакционная способность и образование двух рядов производных окси- (соответственно амино-) и оксо- (соответственно имино-) форм за счет перераспределенной связи в пиримидиновой части молекулы. Кроме того, при работе с ттурином возникает дополнительная возможность образования двух рядов производных и в имидизольном ядре молекулы, так как при алкилировании могут образоваться продукты замещения как по N(7), гак и по N(9), причем и этот случай ранее объяснялся наличием таутомерного превращения. [c.185]

    Каждый нуклеотид является молекулой, состоящей из пуринового или пиримидинового основания, моносахарида - дезоксирибозы в случае ДНК и фосфатного остатка. В составе ДНК основными азотистыми основаниями являются аденин и гуанин - пуриновые основания, а также цитозин и тимин - пиримидиновые основания. Как пуриновые, так и пиримидиновые основания могут быть в лактимной или лактамной форме. Последняя преобладает в физиологических условиях. В состав РНК входят те же пуриновые основания, что и в ДНК, но вместо тимина РНК содержит урацил, а моносахарид в РНК представлен рибозой. Молекула, содержащая моносахарид и основание, называется нуклеозидом, а после присоединения фосфатной группы - нуклеотидом. Основные компоненты ДНК и РНК нуклеотидов показаны на рис. 17. В малых количествах в составе НК встречаются такие основания как метилцитозин или оксиметилцитозин, метиладе-нин, метилгуанин, тиоурацил и др. [c.43]

    Многие аминопиримидины, их гидрированные аналоги и конденсированные системы широко распространены в природе и представляют собой биологически активные соединения. Пиримидиновые (цитозин) и пуриновые основания (аденин, гуанин) входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов, коферментов (тиаминдифосфат) антибиотиков (кордицепин, пликацетин, гоугеротин и другие нуклео- [c.157]

    Нуклеотиды содержат остатки моносахарида, гетероциклического основания и фосфорной кислоты. В качестве углеводного фрагмента выступают остатки О-рибозы или 2-дезокси-Ь-рибозы. В качестве оснований выступают либо замещенные 9Н-нурины, такие как гуанин, аденин или гипоксантин (пуриновые основания), либо замещенные пиримидины — цитозин, урацил или тимин (пиримидиновые основания). Соединение пуринового и соответственно пиримидинового основания с моносахаридом осуществляется за счет гликозидной связи, возникающей между атомом С-Г остатка р-О-рибофуранозы или же 2 -дезок-си-р-О-рибофуранозы и атомом азота N-9 (у пуринов) или N-1 (у пиримидиновых оснований). Фосфорная группа этерифицирует гидроксильную группу при атоме С-5 углеводного фрагмента в одних нуклеотидах и атом С-3 в других нуклеотидах. Примерами нуклеотидов могут слу- [c.660]

    Выделение и идентификацию компонентов нуклеиновых кислот производят с помощью физико-химических методов. Очень важную роль в разделении сложных смесей играют хроматографические методы ( см. 15.1). Пиримидииовые и пуриновые основания, обладающие заметным поглощением около 260 нм, обычно идентифицируют с помощью УФ-спектроскопии (см. 15.3.1). Поскольку нуклеотиды имеют кислотный характер и способны находиться в ионизированном сосюя НИИ, то для идентификации их используют также электрофорез (см. 15.1). [c.444]

    Нуклеиновые кислоты являются биополимерами, состоящими из четырех разных мономеров — нуклеотидов, связанных между собой фосфодиэфирными связями между 5 -фосфатом одного нуклеотида и З -гидрок-сильной группой углеводного компонента соседнего нуклеотида. Нуклеотиды состоят из трех компонентов пиримидинового или пуринового основания, связанного с углеводным компонентом (рибозой или дезоксирибо-зой), и фосфорной кислоты, этерифицирующей углевод по 2, 3 или (наиболее часто) 5 углеродному атому. Нуклеотиды являются сильными кислотами. Они называются соответственно входящему в их состав азотистому основанию — адениловой, гуаниловой, тимидино-вой, цитидиловой и уридиловой кислотами. [c.94]

    Характерной чертой синтеза нуклеотидов являются реакции регенерации. Пуриновые основания могут присоединяться к ФРПФ. Полная схема de novo синтеза пуриновых нуклеотидов представлена на рис. 14.4. [c.423]

    Азотистые основания, входящие в состав нуклеотидов цепочки ДНК, объединены водородными связями так, что аденин всегда спарен с тимином, гуанин с цитозином содержание аденина с тимином, а гуанина с цитозином — эквимоле-кулярны, иначе говоря А = Т и Г = Ц. Отношение пуриновых оснований к пирими- [c.29]

    Сдвиги резонансных сигналов в сторону сильного поля при повышении концентрации в водном растворе (la-naлогичные тем, которые обсуждались в разд. 15.3 для свободных пуриновых оснований) наблюдались также для пуриновых нуклеозидов и нуклеотидов [23, 29—33]. Их происхождение было объяснено той же причиной, т. е. стэкинг-взаимодействием оснований. Однако эти выводы были подвергнуты критике, как уже говорилось в разд. 15.3. В этих экспериментах также использовали внешний стандарт и не вводили поправку на изменение магнитной восприимчивости. Например, Т цо и сотр. [33] описали сдвиги в слабое поле при повышении температуры для протонов при С-5, С-6 и С-Г в УМФ. В качестве внешнего эталона использовался тетраметилсилан (рис. 15.6,6). Однако не принималось во внимание изменение разности восприимчивости растворителя и эталона при изменении температуры. Блэкбёрн и сотр. [34] показали, что если внутренним эталоном служит ДСС, то, в действительности, химические сдвиги изменяются в противоположном направлении с ростом температуры (рис. 15.6,а). Стэкинг-взаимодействие тем не менее мо- [c.414]

    Пространственные соображения, кроме того, дают основание полагать, что анты-конформация будет энергетически более выгодной, чем смн-конформация, и что различие в энергиях будет больше для пуриновых оснований. В ангы-конформации пиримидиновых оснований протон при С-6 значительно ближе к фосфатной группе, чем в сын-конформации. В анти-АЖФ протон при С-8 значительно ближе к фосфатной группе, чем протон при С-2 для сын-АМФ справедливо обратное соотношение. Деэкранирующее влияние заряженной фосфатной группы на протон при С-6 в УМФ и ЦМФ было установлено Швайцером и сотр. [32] для З -УМФ и З -ЦМФ не наблюдается подобных эффектов. Кроме того, было показано [31], что при титровании ТМФ от очень низких значений рО резонансный сигнал протона при С-6 смещается в сторону слабого поля неравномерно. На кривой зависимости химического сдвига от рВ наблюдаются две точки перегиба — при рО = 1,5 и рВ = 6,0, что соответствует первой и второй ступеням ионизации фосфатной группы. Для протона при С-8 в АМФ наблюдаются более поразительные эффекты [31, 32]. При повышении рВ приблизительно от нуля сначала происходит уменьшение экранирования, обусловленное первой стадией ионизации фосфатной группы, а затем увеличение экранирования, связанное с депротонированием пуринового кольца (как мы уже видели, этого никогда не происходит для протонов кольца пиримидиновых нуклеотидов, поскольку кольцо в [c.416]

    Переносчики электронов в дыхательных цепях живых организмов, убихиноны [63], и кофакторы ферментов [64] хиноидной структуры легко подвергаются окислительно-восстановительным превращениям на пирографитовых электродах. Нуклеотиды, содержащие пурины, флавинадениндинуклеотид, флавинмононук-леотид, также окисляются на углеродных материалах [65]. Это позволяет проводить одновременное определение пуриновых оснований и их нуклеозидов. В работе [66] предложено измерять микромолярные концентрации НАДН (никотинамидаденинди-нуклеотид) на стеклоуглероде. [c.113]

    АДЕНЙН м. Гетероциклическое соединение из группы пуриновых оснований является составной частью адениновых нуклеотидов и в таком виде широко распространён в живых организмах. [c.11]

    Важнейшие биохимические реакции связаны с превращениями энергии в живой клетке. Энергия накапливается и передается в молекулах аденозинтрифосфорной кислоты (АТФ) — нуклеотида, состоящего из азотистого (пуринового) основания аденина, сахара (рибозы) и трех остатков фосфорной кислоты, которые связаны между собой богатыми свободной энергией (макроэргическими) химическими связями. Исходным источником энерги1Г является солнечный свет, энергия которого в зеленых листьях растений при участии красящего вещества—хлорофилла расходуется на синтез АТФ (фотосинтетическое фосфорилирование). В дал1.нейшем АТФ расходует накопленную энергию в последующих стадиях фотосинтеза, приводящих к образованию из двуокиси углерода и воды крахмала — полимерного сахаристого вещества в котором на длительное время запасается [c.491]

    Основание-1-Фосфорибозилпирофосфат Нуклеотид- -Пирофосфат, а также в биосинтезе пуриновых оснований (см. гл. 11). [c.91]


Смотреть страницы где упоминается термин Нуклеотиды пуриновые основания: [c.200]    [c.107]    [c.424]    [c.349]    [c.341]    [c.378]    [c.297]    [c.315]    [c.620]    [c.62]    [c.178]    [c.158]    [c.458]    [c.425]    [c.428]    [c.190]    [c.84]   
Химия природных соединений (1960) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеотиды

Пуриновые

Сахара (пентозы).— Пиримидиновые основания.— Пуриновые основания.— Нуклеозиды.— Нуклеотиды.— Нуклеиновые кислоты.— Биологическое значение нуклеиновых кислот Ферменты



© 2025 chem21.info Реклама на сайте