Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие теоретическая ступень

    Реальная контактная ступень, для которой покидающие ее паровой и жидкий потоки находятся в равновесии, имела бы с этой точки зрения 100%-ную эффективность. Данное условие предполагает идеальное перемешивание жидкости на тарелке, обеспечивающее установление но всей ее поверхности некоторого среднего состава флегмы, равновесной поднимающемуся паровому потоку. Вместе с тем самопроизвольный процесс установления равновесия между контактирующими фазами протекает во времени, а не мгновенно, и поэтому в самом понятии теоретической ступени содержится еще и предположение о том, что обеспечивается время, необходимое для достижения равновесия. Этим идеализированным предельным условиям не отвечает практическая тарелка, работающая в реальной производственной обстановке. Во-первых, она характеризуется известным градиентом состава жидкости по всей своей поверхности и стекающая с нее флегма не имеет [c.207]


    Если полученное ранее уравнение состояния фазы (1.7) записать для одной из насыщенных фаз, покидающих произвольную теоретическую ступень, то, учитывая, что в условиях равновесия изменение изобарного потенциала равно нулю, можно получить, например, для жидкого потока [c.347]

    Так ведется аналитический расчет числа теоретических ступеней контакта путем постепенного перехода от одного межтарелочного уровня к другому, с попеременным использованием соотношений фазового равновесия для нахождения составов расходящихся с тарелки потоков и уравнения концетраций для определения составов встречных на одном уровне потоков. [c.75]

    Таким образом, достаточно знать один из составов фаз в каком-нибудь произвольном сечении рассматриваемой секции и расположение на тепловой диаграмме точки г, бд), являющейся полюсом, чтобы путем последовательного проведения из полюса оперативных линий и с помощью данных по парожидкому равновесию разделяемой системы, произвести расчет числа теоретических ступеней контакта. [c.109]

    Для изотермических процессов равновесие между фазами является только функцией их состава. В этом случае расчет числа теоретических ступеней, необходимых для осуществления того или иного процесса, заключается в последовательном, от ступени к ступени определении концентраций фаз, выходящих из теоретических ступеней, с помощью уравнений (III. И) и уравнений внутреннего материального баланса (рабочих линий). В основе расчета лежит модель аппарата со ступенчатым контактом фаз, причем каждая ступень считается теоретической. [c.44]

    Последовательность расчетных операций, показанную на рис. П1.2, часто выполняют графически, строя ступенчатую линию между рабочей линией и линией равновесия (см. рис. 1П.З). Графический метод менее точен, однако позволяет при большом числе теоретических ступеней произвести расчет гораздо быстрее. Численный метод может быть ускорен благодаря применению ЭВМ. [c.45]

    В уравнении (111.14) концентрации выражены в относительных мольных или массовых единицах. Строго говоря, только при таком способе выражения составов расходы фаз, характеризуемые расходами инертных компонентов, можно считать постоянными. Мольные, массовые, объемные расходы обычно меняются в процессе массопередачи. Однако при малых концентрациях распределяемого компонента эти изменения невелики, В этом случае, если линия равновесия линейна при выражении концентраций в мольных или массовых долях, либо в кг/м , уравнением (111.14) можно пользоваться для расчета числа теоретических ступеней, подставляя в него соответственно мольные,. массовые или объемные расходы фаз. Для жидкостной экстракции при условии, что [c.46]


    Точный расчет числа теоретических ступеней основан на модели ректификационной колонны со ступенчатым контактом фаз (рис. III.9, б), причем каждая ступень принимается теоретической. Расчет заключается в последовательном определении, от ступени к ступени, расходов, составов и энтальпий фаз с помощью уравнения фазового равновесия (111.11), а также материального и теплового балансов. Для верхней (укрепляющей) части колонны [c.58]

    Определение числа теоретических ступеней. Число необходимых для осуществления данного процесса теоретических ступеней находим, производя последовательный расчет составов, температур и расходов фаз от ступени к ступени по схеме, показанной на рис II. 10. Начинаем с первой ступени (га = 1). Из равновесных данных определяем состав жидкости, находящейся в равновесии с паром, выходящим с первой ступени  [c.60]

    Расчет числа теоретических ступеней значительно упрощается при допущении постоянства мольных расходов. Схема расчета показана на рис. III. 11. Составы фаз, выходящие из теоретических ступеней, определяются последовательно, начиная с верхней ступени, с помощью уравнений (III.И), (III.65) и (III.66). Последовательность вычислительных операций, показанную на рис. 111.11, обычно выполняют графически, строя ступенчатую линию между кривой равновесия и рабочей линией. [c.61]

    Поскольку характер потоков по высоте колонны меняется, запишем уравнение баланса для участка колонны — эквивалентной теоретической ступени разделения высотой Н . На этом участке линию равновесия можно считать прямой, а скорость массопередачи пропорциональной разности средних для участка реальной (С) и равновесной (С ) концентраций. Таким образом, экстракционная колонна рассматривается как каскад элементов идеального перемешивания, причем число элементов М = ЫН (где Ь — общая высота колонны, а Яс — высота ступени разделения). Для оценки величины Я предложен ряд расчетных соотношений. По Кафарову [22], для режимов, близких к захлебыванию, справедливо соотношение [c.90]

    Отсюда с =—79,9. На диаграмму равновесия (рис. 2-62,6) нанесем точки и 1 и с их помощью найдем число теоретических ступеней (оно равно 20, исходный раствор подается на десятую ступень). Количество растворителя из сырого экстракта равно  [c.182]

    Оба метода учитывают гидродинамические условия процесса экстракции и влияние этих условий на массопередачу. С их помощью можно определить высоту экстракционной колонны. Расчет третьим методом ведется в два этапа в первом определяется число теоретических ступеней, которое потребовалось бы для проведения экстракции в многоступенчатой аппаратуре, а во втором—высота колонны, соответствующая одной ступени. Умножая ее на число ступеней, получим общую высоту колонны. Этот метод имеет некоторые преимущества, так как дает возможность не только определить размеры многоступенчатой системы, но и проанализировать в условиях состояния равновесия влияние на процесс некоторых параметров (количество растворителя, концентрация). Однако он не дает ясного представления о механизме массопередачи. Хотя этот метод применяется при расчетах диффузионных аппаратов и описан в технической литературе с использованием высоты эквивалентной теоретической ступени , в настоящей работе он не рассматривается. [c.239]

    Число теоретических и практических ступеней. Число теоретических ступеней зависит от физикохимических свойств системы, влияющих на ход кривой равновесия, от количества растворителя по отношению к исходному раствору, от начальной и конечной концентрации экстрагируемого вещества в исходном растворе и от степени чистоты растворителя. [c.369]

    Статическими параметрами, определяемыми при расчете процессов абсорбции и дистилляции, являются удельный расход абсорбента, или соответственно флегмовое отношение, число теоретических ступеней контакта (число теоретических тарелок). Эти параметры определяются при совместном решении уравнений материального баланса (уравнений рабочих линий процесса) и уравнений равновесия. [c.43]

    Число теоретических ступеней контакта, или число теоретических тарелок, может быть найдено аналитически или графически, совместным решением уравнений равновесия и рабочей линии процесса. Одна теоретическая тарелка выражает одно изменение движуш,ей силы по газовой Аг/ и одно по жидкой Дл фазам, причем число теоретических тарелок и движущая сила процесса находятся в обратном соотношении, т. е. чем больше движущая сила (больше отрезки Ау и Ах), тем меньше потребуется теоретических тарелок для данного разделения. [c.226]


    Равновесие фаз (теоретическая ступень разделения) [c.298]

    Модель 3. Эта модель, наиболее широко используемая в практике проектных расчетов, основана на концепции теоретической ступени разделения. Многочисленные модификации этой модели не имеют принципиальных отличий. Основное допущение, используемое в этой модели, состоит в том, что пар, уходящий со ступени разделения, находится в равновесии с жидкостью, покидающей эту ступень. Таким образом, исключается необходимость в рассмотрении процесса массопередачи в многокомпонентных смесях, что, в свою очередь, существенно упрощает решение системы уравнений математического описания. [c.314]

    Предположим, что нагревается смесь состава х . При температуре 1 она начинает кипеть, при этом паровая фаза имеет состав у. Жидкая фаза Хд находится в равновесии с паровой фазой у при температуре /. Изобарные кривые кипения и конденсации определяют экспериментально так же, как и кривую равновесия (см. разд. 4.6.З.). Диаграмму t—х—у как и диаграмму равновесия у—х можно использовать для определения требуемого числа теоретических ступеней разделения. На рис. 59 (см. разд. 4.7) изображена кривая равновесия для смеси бензол— толуол, построенная на основе изобарных кривых кипения и конденсации. Точки Л и В лежат в этом случае одна под другой. Диаграмма 1—х—у имеет то преимущество, что в процессе перегонки можно по температуре в головке колонны определять концентрацию головного продукта. При работе с тарельчатыми колоннами эта диаграмма позволяет проводить текущий контроль состава смеси на тарелках по перепаду температуры в колонне. По температурам на тарелках можно установить оптимальную тарелку питания и тарелку для отбора промежуточного продукта. [c.75]

    Рассмотрим процесс разделения смеси жирных кислот нормального строения Са—С,, содержащей 81% (мол.) кислоты 6- Остаточное давление при разгонке должно составлять 20 мм рт. ст. Рассчитаем число теоретических ступеней, необходимое для разделения этой смеси по непрерывному способу, если требуется получить головной продукт, содержащий 96% (мол.) низкокипящего компонента, а кубовый остаток — 0,5%.Кривая равновесия для этой смеси экспериментально не изучена, она была рассчитана по формуле (52) при а = 2,10 (рис. 63). [c.104]

    Расчетная кривая равновесия смеси жирных кислот С,—С, нормального строения при 20 мм рт. ст. и пример графического способа расчета числа теоретических ступеней разделения для непрерывной ректификации. [c.105]

    Если на кривой равновесия для какой-либо смеси имеется точка перегиба, например для смеси этанол—вода, то число теоретических ступеней разделения определяют методами, описанными в разд. 4.7.1 и 4.7.2. Однако при этом вводятся следующие ограничения, а именно концентрация легколетучего компонента в головном продукте % должна быть меньше концентрации в азеотропной точке, а при определении минимального флегмового числа рабочую линию процесса ректификации для укрепляющей части колонны следует[проводить по касательной к кривой равновесия (рис. 65). Если провести рабочую линию а—с , как обычно, от точки а через точку Ь , то на кривой равновесия получатся три точки пересечения Ь , и Ь . Даже при некотором увеличении флегмового числа, начиная с его минимального значения, этой рабочей линии соответствует бесконечно большое число теоретических ступеней разделения. Чтобы получить конечное число теоретических ступеней, необходимо перейти от минимального флегмового числа, соответствующего касательной к кривой равновесия (рабочая линия а—с), к несколько большему флегмовому числу, определяемому рабочей линией а—с после этого можно строить [c.107]

    ОПРЕДЕЛЕНИЕ ЧИСЛА ТЕОРЕТИЧЕСКИХ СТУПЕНЕЙ РАЗДЕЛЕНИЯ ДЛЯ СМЕСЕЙ СО СЛАБО ВЫПУКЛЫМИ КРИВЫМИ РАВНОВЕСИЯ И ПРИ НЕБОЛЬШОМ РАССТОЯНИИ МЕЖДУ КРИВОЙ РАВНОВЕСИЯ И РАБОЧЕЙ ЛИНИЕЙ [c.108]

    Иначе протекает процесс в насадочной колонне. Изменение концентрации здесь в каждом слое между сечениями Уг и у пропорционально у — у. Только когда кривая равновесия и рабочая линии расположены параллельно (см. рис. 796), имеет место случай, при котором ЧЕП и число теоретических ступеней разделения п совпадают, поскольку в рассматриваемой области концентраций разность у — у остается постоянной. Такая зависимость наблюдается при ректификации идеальных смесей, компоненты которых имеют мало различающиеся температуры кипения. Подобные смеси. используют главным образом при испытании колонн. Вообще, по обогащающему эффекту единица переноса идентична теоретической ступени разделения, рассчитанной для разности концентраций у —у, являющейся средней между значением у —у1 и соответствующей разностью концентраций у1—уь в конце единицы переноса [71]. [c.123]

    В качестве головного и кубового продуктов можно отбирать и смеси различных компонентов, как показано на рис. 86 для колонны I. В дистилляте получают фракцию С4—Се, а в кубе — фракцию С,—Сд следовательно, граница раздела смеси лежит между компонентами и С,. В этом случае прежде всего выбирают кривые равновесия для крайних пар компонентов, т. е. для С4—С, и С,—Са, и рассчитывают число теоретических ступеней разделения и другие условия ректификации, необходимые для обогащения смеси до % = 95% (мол.) при непрерывном режиме работы колонны. Для двух полученных чисел ступеней вычисляют среднее значение. За основу можно взять также кривую равновесия для смеси Се—С,, поскольку количественно фракция С4—Сд преобладает, а компонент Сд почти не участвует в массообмене. [c.134]

    Число теоретических ступеней разделения, установленное при испытании колонны, определяется кривой равновесия эталонной смеси и зависит от соблюдаемых условий ректификации и, разумеется, от размеров колонны. Если завод-изготовитель указывает для ректификационной колонны лишь число теоретических ступеней разделения без каких-либо дополнительных пояснений, то подобная информация практически бесполезна. Только при [c.136]

    Расчет числа теоретических ступеней разделения и флегмового числа. Кривая равновесия системы бензол — -гептан известна (см. табл. 26, разд. 4.10.3), она асимптотически приближается к диагонали [при увеличении концентрации до 100% (мол.)]. [c.187]

    Рабочая линия, проведенная через у = 9,9 и % = 99,0 для рабочего флегмового числа у = 9, служит базой для графического изображения ступеней разделения между этой линией и кривой равновесия. Для начала разгонки находим число теоретических ступеней п = 25. [c.187]

    Практически все технические расчеты процесса перегонки можно проводить с помощью ЭВМ. Уже применение настольных вычислительных машин дает возможность определить давление паров, параметры фазового равновесия и оптимальные условия для получения максимального числа теоретических ступеней разделения, а также рассчитывать флегмовые числа. Применение ЭВМ типа IBM 7040, например при исследовании работы насадочных колонн в переходном режиме, обеспечивает выигрыш во времени благодаря быстрому определению состава вещества (в мольных долях) иа основе данных по плотности и показателям преломления [1621. [c.191]

Рис. III.3. Графическое определение числа теоретических ступеней (к примеру 1) а — концентрации в мол. долях б — концентрации в кмоль/кмоль ин. комп. I — линня равновесия 2 — рабочая линия. Рис. III.3. <a href="/info/637630">Графическое определение числа</a> <a href="/info/14254">теоретических ступеней</a> (к примеру 1) а — концентрации в мол. долях б — концентрации в <a href="/info/1915506">кмоль/кмоль</a> ин. комп. I — <a href="/info/30382">линня равновесия</a> 2 — рабочая линия.
    Если В процессе массооб.мена меняются температуры фаз, то расчет числа теоретических ступеней усложняется, поскольку температура. может влиять на условия равновесия. В этом случае кроме определения расходов и составов фаз, уходящих с каждой ступени, необходимо рассчитывать и их те.адпературы (для теоретических ступеней они должны быть одинаковы, так как выходящие из каждой такой ступени фазы находятся в равновесии). Температуры определяют из уравнения теплового баланса для каждой ступени, которое при.менительно к абсорбции может быть написано в виде  [c.46]

    При смешивании и разделении жидкостей в канедой ступени устанавливается в идеальном случае состояние межфазного равновесия, обеспечнваюш,ее достижение наивысшей степени возможного экстрагирования. Такая ступень, в которой достигаются равновесные составы жидкостей, называется теоретической ступенью. Вследствие несовершенства процессов перемешивания и отстаивания, а TaKHie конечного времени контакта фаз состояние равновесия в действительности не достигается, поэтому число ступеней, из которых состоит экстракционная система, всегда несколько больше теоретически рассчитанного числа. Также и количество экстрагированного вещества всегда меньше количества, которое растворилось бы, если бы было достигнуто равновесие. [c.256]

    При ректификации веществ, требующих минимального теплового воздействия или пониженной температуры, необходимы мягкие условия, т. е. низкий перепад давления на теоретическую ступень ректификации. Для получения таких условий идут на создание более сложных и дорогих контактирующих устройств. Например, фирма Fritz W. Glit-son and Son выпускает контактирующее устройство, позволяющее увеличить пропускную способность по пару на 50% по сравнению с колпачковыми и ситчатыми тарелками. Перепад давления составляет 0,3—0,4 мм рт. ст. на одну теоретическую ступень равновесия. Стоимость такой тарелки в два раза больше стоимости колпачковой тарелки. Чтобы значительно уменьшить перепад давления, переходят на радикально новые конструкции. Примером могут служить колонны с вра- [c.138]

    Кривая равновесия у—х показывает связь между концентрацией жидкости л и соответствующей концентрацией пара у, находящегося в состоянии равновесия с жидкостью. Следовательно, кривая равновесия является основой для расчета числа теоретических ступеней разделения по графическому методу Мак-Кэба и Тиле [771, который успешно и широко применяется благодаря своей простоте. На рис. 43 в ряду П1 представлены кривые равновесия для смесей различных типов. Для смесей взаимно нерастворимых компонентов кривая равновесия представляет собой прямую линию (тип 1), которая пересекает диагональ в одной точке, называемой азеотропной. В этой точке составы пара и жидкости одинаковы обогащение паров легколетучим компонентом при более высокой концентрации жидкости х уже невозможно напротив, в этой области концентраций пар содержит меньше легколетучего компонента, чем жидкость. При перегонке смесей взаимно нерастворимых компонентов (тип 1) или смесей только частично растворимых компонентов (тип 2) дистиллят имеет один и тот же состав в широком интервале изменения концентрации легколетучего компонента в кипящей жидкости и только в непосредственной близости от концентраций О и 100% появляются промежуточные составы дистиллята. Для смесей с максимумом на кривой давления паров при концентрации жидкости выше азеотропной (тип 3), а для смесей с минимумом на кривой давления паров при концентрации жидкости меньше азеотропной (тип 5) пары содержат меньше легколетучего компонента, чем исходная жидкость состава л . Для смесей типа 4 характерна форма кривой равновесия у —х, свойственная идеальным смесям, для которых у всегда больше х. [c.76]

    Данные по равновесию пар—жидкость в бинарных и многокомпонентных смесях лежат в основе расчета необходимого числа теоретических ступеней разделения и других параметров процесса ректификации. Ландольт и Бернштайн [c.86]

    Следует выяснить, насколько уменьшается число теоретических ступеней разделения с увеличением флегмового числа. В табл. 12 приведены числа теоретических ступеней, необходимые для разделения смеси бензол—толуол при разных флегмовых числах. На рис. 60 показана кривая равновесия этой смеси с соответствующими рабочими линиями. [c.101]

    ОПРЕДЕЛЕНИЕ ЧИСЛА ТЕОРЕТИЧЕСКИХ СТУПЕНЕЙ РАЗДЕЛЕНИЯ ПО МЕТОДУ МАК-КЭБА И ТИЛЕ ДЛЯ СМЕСЕЙ С КРИВЫМИ РАВНОВЕСИЯ, [c.107]

    Рассмотрим часть диаграммы для графического определения числа теоретических ступеней разделения по. методу Мак-Кзба и Тиле (рис. 79). В тарельчатой колонне между жидкостью состава 1/ , находящейся на тарелке, и поднимающимися парами устанавливается термодинамическое равновесие . Концентрация паров, покидающих тарелку, равна Такую же концентрацию (г/а) имеет жидкость, находящаяся на вышележащей тарелке . В паровом пространстве между тарелками (а следовательно, между точками у и у2) массообмен практически не происходит. [c.123]

    Построения ступенек, соответствующих единицам переноса, проводят методом проб и ошибок, затраты времени на это не очень велики. Если кривая равновесия и рабочая линия являются прямыми (хотя и не параллельными), то точность метода можно повысить, используя среднее логарифмическое значение для у —ух и у1—уь-Однако в большинстве случаев погрешность, вносимая спрямлением одной или обеих кривых или использованием среднего арифметического вместо среднего логарифмического, не существенна. Чтобы наглядно представить взаимосвязь между числом теоретических ступеней разделения и числом единиц переноса, выше был намеренно рассмотрен наиболее простой из графических методов. Другие точные и приближенные методы описаны в работах Штаге и Джуилфса [71 ]. В весьма интересной статье, содержащей математическое описание понятий п и ЧЕП, Аркенбут и Смит [ 166 ] показали, что согласно их расчетам нередко ВЭТС оказывается более удобной единицей длины колонны, чем ВЕП. [c.126]

    Соединим Joчки у = 1,94 и = 99,0. Между новой рабочей линией и кривой равновесия строим ступенчатую линию. Как и следовало ожидать, получаем п = 25 теоретических ступеней. [c.187]

    Приняв за основу метод Мак-Кэба и Тиле, Шубринг [2511 разработал программу расчета процесса разделения бинарных смесей, предназначенную для ЭВМ IBM 705. Допустив вполне практически приемлемые упрощения, в соответствии с которыми мольная энтальпия испарения не зависит от состава смеси, а энтальпия растворения равна нулю, с помощью этой программы можно рассчитать число теоретических ступеней разделения для двухкомпонентных смесей, как идеальных, так и неидеальных, в том числе азеотропных смесей. С помощью перфокарт в имеющуюся программу закладывают данные по равновесию, концентрации питающей жидкости, дистиллята и кубовой жидкости. Время решения одной задачи составляет от 15 с до 5 мин. Напечатанная таблица, полученная на ЭВМ, дает для каждой задачи последовательность возможных значений числа теоретических ступеней разделения в зависимости от флегмового числа или от [c.191]


Смотреть страницы где упоминается термин Равновесие теоретическая ступень: [c.260]    [c.11]    [c.62]    [c.92]    [c.367]    [c.147]   
Гидродинамика, теплообмен и массообмен (1966) -- [ c.589 ]




ПОИСК





Смотрите так же термины и статьи:

Ступень

Ступень ступени



© 2025 chem21.info Реклама на сайте