Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газа воздуха

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]


    Технологическая схема щелочной очистки газа от меркаптанов мало отличается от схемы очистки моноэтаноламином, только регенерация раствора щелочи проводится открытым водяным паром или продувкой горячим воздухом, или последовательно тем и другим. В случае очистки газов от диоксида углерода равновесное давление газа над абсорбентом равно нулю, что позволяет осуществлять многократную циркуляцию абсорбента с выводом части его из системы и дозированием свежего. Такая схема щелочной доочистки газов пиролиза, используемая в этиленовом производстве на установке ЭП-300, приведена на рис. ХП1-1. Газ после IV ступени турбокомпрессора (с установки ЭП-300) при давлении [c.115]

    Для абсорбционной очистки больших объемов газов, что имеет место при очистке вентиляционного воздуха и воздуха местных отсосов в химической, металлургической и других отраслях промышленности, наибольшее распространение получил форсуночный многоярусный полый скруббер. Он представляет собой цилиндрическую колонну, в нижней части которой имеется боковой подвод очищаемого воздуха, по высоте колонны располагается несколько ярусов форсунок, вьпне - капле-уловитель и далее труба рассеяния. Достоинствами полых скрубберов являются малое гидравлическое сопротивление, большие расходы воздуха (существующие аппараты имеют расходы от 4000 м /ч до 1 млн. м /ч), высокие эксплуатационные качества, обеспечиваемые простотой его конструкции. Наиболее уязвимым местом до недавнего времени бьш жалюзийный каплеуловитель, где в зоне низких скоростей происходило отложение твердых осадков. От этого недостатка избавлен центробежный каплеуловитель [360], скорость воздуха в котором составляет 10-18 м/с, что обеспечивает самоочищение от осадков. [c.249]

    При обжиге концентратов сульфидов меди, цинка и других цветных металлов на металлургических заводах тоже получается диоксид серы, который используется для производства серной кислоты. Таким образом, производство цветных металлов из сернистых руд комбинируется с производством диоксида серы. До 25% серной кислоты получается из отходящих газов цветной металлургии, Значительная часть сернистых газов в цветной металлургии получается с содержанием ЗО2 менее 37о. Для использования в производстве серной кислоты эти газы необходимо концентрировать. Однако на ряде заводов цветной металлургии концентрирование газов еще не производится и они выпускаются в атмосферу. В настоящее время проектируется более полное использование сернистых газов цветной металлургии. Лучшим сырьем для производства диоксида серы служит сера, которая выплавляется из природных пород, содержащих серу, а также получается как побочный продукт в производстве меди, при очистке газов и т. п. Сера плавится при 113°С, легко воспламеняется и сгорает в простых по устройству печах. При сжигании серы в воздухе получается газ более высокой концентрации, чем при сжигании колчедана, с меньшим содержанием вредных примесей. Из серы вырабатывается около 35% производимой в СССР серной кислоты. [c.117]


    Очистка газа от механических примесей. Для предохранения оборудования от преждевременного износа воздух или газ, всасываемый в машину, должен быть очищен от твердых частиц (пыли, песка, окалины, продуктов коррозии). Для очистки газа применяют масляные пылеуловители, висциновые фильтры и циклонные сепараторы. Принцип действия масляного пылеуловителя заключается в том, что в корпусе аппарата поток газа теряет скорость и изменяет направление над зеркалом солярового масла, в результате чего из газа выпадают крупные твердые частицы, поглощаемые маслом. Затем газ проходит через фильтр для дополнительной очистки. Загрязненное масло из пылеуловителей периодически удаляется. Такие же аппараты служат в качестве масловлагоотделителей. [c.284]

    Циклонирование циклонный процесс) - процесс разделения неоднородных систем газ—твердое тело (газовзвесей) в неподвижном аппарате, производимый путем осаждения твердых частиц в поле центробежных сил (при сообщении газовзвеси вращательного движения). Применяется для сухой очистки газов (воздуха). [c.7]

    Таким образом, на никельхромовом катализаторе, варьируя технологические параметры (температуру и объемную скорость), можно получать различные целевые продукты (серу или диоксид серы). Этот катализатор предложен для селективной очистки газов от сероводорода окислением последнего кислородом воздуха до элементной серы при температуре 270...280"С и объемной скорости 10000 ч . Степень утилизации сероводорода составляет 92% [3]. [c.103]

    Отходящие газы, не содержащие токсичных веществ, также должны быть рассеяны в атмосфере, так как прн повышенном содержании инертного газа снижается концентрация кислорода в воздухе. Методы очистки газов необходимо сочетать с рассеиванием нх в атмосфере. [c.71]

    Данную схему используют также для очистки газов дегазации углеводородного конденсата. Извлечение кислых компонентов осуществляют подачей противотоком катализаторного комплекса насосами 5 и 6 в верхнюю часть абсорбера 1. Катализаторный комплекс представляет собой полифталоцианин кобальта, растворенный в смешенном абсорбенте, состоящем из диэтаноламина, диметилацетамина и воды. В случае применения смешанного абсорбента поглощение сероводорода и двуокиси углерода происходит главным образом за счет химического взаимодействия с диэтаноламином, тиолов - за счет их физического растворения. Условия абсорбции давление 5,8...6 МПа, температура 20...35°С. Насыщенный кислыми компонентами катализаторный комплекс из куба абсорбера поступает в экспанзер 2, где при снижении давления до 0,4 МПа удаляются физические растворенные углеводоро-дьк Дегазированный поглотитель насосом 3 направляют на окислительную регенерацию в реактор змеевикового типа 4. Регенерацию осуществляют кислородом воздуха, подаваемым в поток из расчета [c.145]

    После перемешивания в течение 5—20 мин суспензию направляют на центрифугу или нутч-фильтр. Отработанный уголь поступает на регенерацию или в отвал. Очистку газов (воздух, водород, ацетилен) производят чаще всего в аппаратах с неподвижным слоем адсорбента (силикагель, активированный уголь). Используют схему из двух параллельно работающих аппаратов. Во время работы одного из них второй находится иа регенерации (рис. 78). Регенерацию адсорбента осуществляют подачей пара или перегретого воздуха. Аналогичная схе ма используется и для очистки жидкостей. [c.291]

    Циклоны являются наиболее распространенными аппарат газоочистки, широко применяемыми в химической промышленно В основном они используются для предварительной очистки газе воздуха и устанавливаются перед скрубберами, электрофильтр или рукавными фильтрами. [c.214]

    Для сухой очистки газа (воздуха) от высокодисперсной пыли широко применяются тканевые фильтры. В отличие от ткани, через которую проходит чистый (незапылен-ный) газ, сопротивление фильтрующей ткани при запыленном газе возрастает со временем. Это объясняется тем, что поры ткани со стороны входа запыленного газа заполняются частицами пыли и образуют в порах и на поверхности ткани вторичную пористую перегородку. По мере забивания пор ткани частицами пыли и увеличения толщины ее слоя на поверхности сопротивление фильтрующей пористой среды (ткани и пыли) возрастает. [c.379]

    Сероводород, полученный при очистке газов физикохимическими методами, может перерабатываться в серу различными способами. В промышленности га ювой серы в основном применяется процесс, известный как процесс Клауса, который заключается в окислении сероводорода до серы кислородом воздуха либо взаимодействием сероводорода с диоксидом серы, получаемым сжиганием некоторой части сероводорода  [c.153]

    Для повышения степени очистки газа (воздуха) от взвешенных частиц часто применяют мокрые газоочистные аппараты. Улучшение улавливания в мокрых аппаратах достигается орошением газового потока жидкостью, разбрызгиваемой форсунками (соплами), или водяной пленкой, создаваемой на поверхности газоочистного аппарата. [c.507]

    Природный газ под давлением 4 МПа после очистки от серосодержащих соединений смешивается с паром в соотнощении 3,7 1, подогревается в теплообменнике отходящими газами и поступает в трубчатый конвертор метана с топкой, в которой сжигается природный газ. Процесс конверсии метана с водяным паром до образования оксида углерода протекает на никелевом катализаторе при 800—850°С. Содержание метана в газе после первой ступени конверсии составляет 9—10%. Далее газ смешивается с воздухом и поступает в шахтный конвертор, где происходит конверсия остаточного метана кислородом воздуха при 900—1000°С и соотношении пар газ = 0,8 1. Из шахтного конвертора газ направляется в котел-утилизатор, где получают пар высоких параметров (10 МПа, 480°С), направляемый в газовые турбины центробежных компрессоров. Из котла-утилизатора газ поступает на двухступенчатую конверсию оксида углерода. Конверсия оксида углерода осуществляется вначале в конверторе первой ступени на среднетемпературном железохромовом катализаторе при 430— 470°С, затем в конверторе второй ступени на низкотемпературном цинкхроммедном катализаторе при 200—260°С. Между первой и второй ступенями конверсии устанавливают котел-утилизатор. Теплота газовой смеси, выходящей из второй ступени конвертора СО, используется для регенерации моноэтаноламинового раствора, выходящего из скруббера очистки газа от СОг. [c.98]


    Печи с топками кипящего слоя для сжигания отходов имеют футерованный огнеупором сосуд, с гранулами инертного материала, через который продувают газы для создания кипящего слоя. В слой щнековым транспортером подают отходы для сжигания. Горячие газы, пройдя кипящий слой, поступают в котел-утилизатор, а затем в систему очистки газа. Для предварительного нагрева слоя до требуемой начальной температуры предусмотрены горелки. Вследствие хорошего контакта горячих газов с отходами, подвергаемыми сжиганию, избыток воздуха обычно составляет лишь 40% от требуемого стехиометрического количества. [c.142]

    В схему процесса входят абсорбер, регенератор, выветрива-телп, теплообменники и насосы. Во многих случаях дополнительно вводятся также турбина для использования гидравлической энергии насыщенного раствора и рециркуляционные компрессоры. Регенерация растворителя осуществляется понижением давления и отдувкой топливным газом, водяным паром, инертным газом или воздухом. Отдувка воздухом, как показывает опыт эксплуатации, не рекомендуется при очистке газа, содержащего H2S, так как в регенераторе происходит частичное окисление H2S в серу кислородом воздуха. Сера может выпасть в виде осадка и затруднить процесс регенерации абсорбента. [c.181]

    Количество воздуха, добавляемого к сырью, составляло 110... 120% от стехиометрического. Зависимость степени очистки газа от температуры на испытываемых катализаторах лри объемной скорости 1000 ч" и [c.103]

    Так как сероводород был взят в недостатке, в контактный раствор подавался кислый газ, который содержал около 70% HjS. Подача сероводорода осуществляется либо вместе с отходящим газом, либо раздельно. В обоих случаях была достигнута 100% очистка от S0,, а после выхода на оптимальный режим и полная очистка от H,S. Высокая концентрация тиосульфата аммония и буферных солей позволяла эффективно проводить очистку газов даже при временном отклонении соотношения H,S SO, t стехиометрии. дозировке воздуха в течении 12 часов работы не отмечено накопления сул.ьфата в контактном растворе. [c.205]

    Приточная механическая вентиляция состоит из ряда элементов, соединенных между собой воздуховодами (рис. 7.4, а) воздухоприемного устройства /, расположение и устройство которого должно исключать возможность подсоса взрывоопасных паров и газов в вентиляционную систему фильтра 3 для очистки приточного воздуха от пыли, если забираемый воздух содержит ее в количествах, недопустимых по санитарным и технологическим требованиям. Имеется много видов фильтров, описание которых приводится в курсе процессы и аппараты (имической технологии калориферов 4, в которых холодный наружный воздух нагревается до расчетной температуры. Наибольшее распространение имеют калориферы, в которых теплоносителем является горячая вода или пар центробежного вентилятора 5, предназначенного для перемещения воздуха по системе воздухораспределительных устройств 6, обеспечивающих подачу воздуха в необходимые места помещения 11 в предусмотренных количествах с заданными скоростями. Для лучшей организации движения воздушных потоков применяются патрубки и [c.75]

    Подача газа (смеси газов, воздуха) в аппараты, печи и машины для технологической обработки (очистка, разделение, улавливание жидких фракций), химического синтеза (производство спирта, полиэтилена и др.), для сгорания (в двигателях, печах) и для осуществления и интенсификации других процессов (очистка нефтепродуктов от сернистых соединений, переработка нефти и нефтепродуктов) з а-качка воздуха в пласт для внутрипластового горения. [c.267]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Торопкина Г. И., Калинкина Л. И,, Малышева Л. И. и др. Каталитические методы очистки воздуха от органических веществ//0бзорная информация. Серия промышленная и санитарная очистка газов.— М. ЦИНТИХИМ-НЕФТЕМАШ, 1977. [c.183]

    Основные мероприятия, обеспечивающие безопасную работу электрос )ильтра, аналогичны применяемым в схемах термоокислительного пиролиза. Отсутствие кис- торода в газах электрокрекинга позволяет значительно упростить системы блокировки. При щелочной очистке газов крекинга от цианистого водорода с последующей регенерацией щелочи все промывные воды дегазируют а специальном аппарате путем продувки воздухом. Тщательность отдувки газов проверяется аналитически. Особое внимание здесь обращается на отсутствие цианистых соединений в отводимом воздухе. [c.107]

    Очистка отходящих воздуха и газов от взвешенных частиц — пыли и тумана осуществляется различными способами в зависимости от размера частиц и необходимой степени очистки. [c.258]

    Один из старейших процессов очистки газа от сернистых соединений— очистка гидратом оксида железа. Гидратированный оксид железа, нанесенный пропиткой на древесные опилки или ст[)ужки (очистная губка ), при поддержании ее во влажном состоянии реагирует с меркаптанами с образованием органических соединений в виде меркаптидов железа. При регенерации отработанной очистной массы кислородом воздуха, меркаптиды л<елеза переходят в окись железа и дисульфиды и (или) мер-каптан . [c.200]

    Регенерация адсорбента является одним из основных вопросов при адсорбционной очистке, от решения которого зависит возможность применения метода и его стоимость. Для удаления органических веществ с поверхности углей применяют вытеснительную десорбцию. В качестве десорбирующего агента используют воздух, инертные газы, насыщенный и перегретый пар. При использовании воздуха температура не превышает 120—140°С, для перегретого пара 200—300°С, для инертней газов 300—500°С. Соединения удаляют с поверхности активных углей также водными растворами кислот, щелочей и солей. При очистке газов ог соединений фтора адсорбент подвергался регенерации 2—3 % раствором NaOH на 99,5%, 3% раствором Naj Oa —на 60—65 %, 3 7о раствором NH4OH —на 15%, водой —на 18,7%. Потери адсорбента при регенерации—2—4 г/м газа. Расход воды и регенерационного раствора на 1 м адсорбента составил 10 м . [c.486]

    Соловьев С. А., Вольфсон В. Я., Власенко В. М. Сорбционно-каталитическая очистка выбросного воздуха от примеси стирола на палладий-марганцевом катализаторе//Каталитическая очистка газов. Материалы III Всесоюзной конференции,— Новосибирск Ин-т катализа СО АН СССР, 1981.— Ч. 1,— С. 141—144. [c.182]

    Сероводород в этом процессе поглощается гидроокисью железа (РезОд), нанесенной на деревянную стружку. Гидроокись железа реагирует с сероводородом, образуя сульфид /келеза (ЕеЗд), который затем разлагается кислородом воздуха с образованием элементарной серы. Регенерация поглотителя I может осуществляться непрерывно, если в ноток газа, поступающий на очистку, вводится небольшое количество воздуха. Однако обычно регенерацию проводят периодически, продувая слой поглотителя потоком воздуха. Считается, что регенерация закончилась, если концентрация кислорода в газе на выходе из реактора возросла до 4—6%, а температура слоя начала падать. Каждая загрузка поглотителя может быть отрегенерирована несколько раз, но после каждой регенерации очистка газа от сероводорода ухудшается и в конце концов возникает необходимость в замене слоя новым поглотителем. [c.281]

    Выполненный объем конструкторских и экспериментальных работ на однотрубной модели аппарата тонкой очистки газов (воздуха) показал возможность создания ряда аппаратов для различных технологических целей для очистки отработанных газов различных крупнотоннажных производств для получения киповского воздуха, питающего приборы и пневмоинструменты в различных отраслях промышленности. Применительно к производствам нефтехимии разработана конструкция многотрубного аппарата тонкой очистки газов от конденсирующихся компонентов. [c.95]

    Газовоздухоочистные аппараты можно разделить на несколько групп в соответствии с принципами, на которых основаны процессы очистки газа (воздуха) от взвешенных в нем частиц. Рассмотрим сопротивление инерционных жалю-зийных пылеотделителей, циклонов - одиночных, групповых и батарейных, мокрых газоочистных аппаратов, фильтров - пористых и тканевых, электрофильтров. [c.504]

    Степень очистки газа (воздуха) зависит от скорости движения потока в момент подхода к лопастям решетки, от размеров частиц пыли, их плотности, вязкости и плотности газов, радиуса кривизны траектории, описываемой струйкой, проходящей через решетку, а также от конструкции пылеот-де лите ля. [c.504]

    При очистке газов и жидкостей в промышленных масштабах очень важным является одновременное удаление паров воды, двуокиси углерода, а тйкже сернистых соединений. По сравнению с другими адсорбентами активность цеолитов по двуокиси углерода при повышении температуры снижается менее резко. При значительном содержании СО, осушку газа и адсорбцию можно вести при атмосферном давлении, при малом, как, например, в воздухе, адсорбцию целесообразнее вести при повышенном давлении. При этом цеолиты СаА несколько лучше адсорбируют СЮ а по сравнению с цеолитом КаА. [c.111]

    Кроме того, эксплуатируются процессы (например Джемарко—Ветрокок), в которых абсорбционная очистка газа от сероводорода сочетается с одновременным его окислением до серы с помощью кислорода воздуха [114, 115]. [c.285]

    Трубчатый змеевик камеры конвекции — двухпоточный, печные трубы размещены в коридорном порядке для удобства очистки от отлол<енпй. Из камеры конвекции топочные газы через стояк, футерованный шамотным кирпичом, попадают в боров, а затем поступают в воздухоподогреватель для нагрева воздуха. Охлажденные до 225 °С топочные газы из воздухоподогревателя отсасываются дымососом в дымовую труб . Нагретый в воздухоподогревателе воздух подводится к горелкам и применяется для распыления топлива. Во избежание конденсации серной кпслоты пз топочных газов воздух перед поступлением в воздухоподогреватель предварительно подогревается до 70—80 °С, что обеспечивается рециркуляцией части горячего воздуха, отводимого по байпасной линпп специальным дутьевым вентилятором в камеру смешения с холодным воздухом. В морозные дн]] и период растопки печи холодный атмосферный воздух направляется непосредственно к горелкам, минуя воздухоподогреватель, В этом случае в качестве резервного используется па- [c.16]

    Вытяжная механическая вентиляция (см. рис. 7.4,6) включает следующие элементы воздухозаборные отверстия (патрубки) 9, через которые загрязненный воздух удаляется из помещения центробежный вентилятор5 для перемещения удаляемого воздуха по воздуховодам очистное устройство 8 (фильтр, скруббер, циклон и др.) с непрерывным удалением уловленных загрязнителей устанавливается в случае необходимости очистки удаляемого воздуха от пыли или газа  [c.77]

    Штейнберг М. E., Гинзбург Я- Л. Численный метод расчета П-образной коллекторной системы с нагнетателями в ответвлениях. — В кн. Пром. очистка газов и аэродинамика пылеулавливающих аппаратов, Ярославль тр, ВНИПКИО для кондиционирования воздуха и вентиляции 1975, с. 48—51. [c.342]

    Для тонкой очистки газа от пыли применяют фильтры, представляюшие собой слой пористого материала, пропускаюшего воздух, но задерживающего взвешенйые в нем твердые и жидкие частицы. Есть много конструкций фильтров и, видов фильтрующих материалов. Теперь найдены синтетические ткани, хорошо задерживающие тонкую пыль, некоторые из них огнеупорны, что позволяет применять их для очистки горячих печных газов. [c.259]

    Если применять на первой ступени контактирования контакт-Р1ЫЙ аппарат с кипящим слоем катализатора, для которого отпадает необходимость тонкой очистки газа от пыли, то получается короткая система производства. При этом в контактный аппарат поступает из электрофильтров горячий газ и появляется возможность частичного использования теплоты окисления 50г для получения товарного пара. В этой системе триоксид серы после первой ступени конденсируется вместе с парами воды, содержащимися в газовой смеси (влага колчедана и воздуха). [c.137]


Смотреть страницы где упоминается термин Очистка газа воздуха : [c.291]    [c.42]    [c.69]    [c.78]    [c.213]    [c.19]    [c.238]   
Химия окружающей среды (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

АППАРАТЫ ДЛЯ ОЧИСТКИ И ОСУШКИ ВОЗДУХА И ГАЗОВ Очистка от механических примесей

Адсорбционная очистка газов воздуха

Альтернативные методы получения кислорода и азота (криогенный и адсорбционный). Производительность установок и достигаемая концентрация целевого компонента. Затраты на получение воздуха, обогащенного кислородом. Комбинирование мембранного и адсорбционного методов. Преимущества мембранного метода разделения воздуха у потребителя Мембранные методы разделения и очистки природного газа

Аппараты для очистки воздуха и газов от пыли

Аппараты для очистки воздуха и газов от пыли Я- Сапожников) Общие сведения

ОЧИСТКА ВЫБРАСЫВАЕМОГО В АТМОСФЕРУ ВОЗДУХА ОТ ВРЕДНЫХ ГАЗОВ И ПЫЛИ

Очистка воздуха и газа от механических примесей

Очистка воздуха и газов

Очистка воздуха и газов (Хартмут Кинле)

Очистка воздуха от двуокиси углерода (углекислого газа)

Очистка газа воздуха абсорбционная

Очистка газа воздуха адсорбционная

Очистка газа воздуха выхлопных

Очистка газа воздуха дезодорация

Очистка газа воздуха коксового газа

Очистка газа воздуха мокрое пылеулавливание

Очистка газа воздуха окислительная

Очистка газа воздуха осаждение

Очистка газа воздуха от азотсодержащих примесей

Очистка газа воздуха от аэрозолей

Очистка газа воздуха от газообразных примесей

Очистка газа воздуха от диоксида серы

Очистка газа воздуха от серосодержащих примесе

Очистка газа воздуха от фторсодержащих примесе

Очистка газа воздуха сухая

Очистка газа воздуха фильтрование

Очистка газов воздуха и аммиака в производстве

Очистка и осушка воздуха и газов

Очистка холодных технологических газов н вентиляционного воздуха

Современные способы очистки воздуха и газов технологических потоков от взрывоопасных примесей

УСТАНОВКИ КОМПЛЕКСНОЙ ОЧИСТКИ И ОСУШКИ ГАЗОВ Установки комплексной очистки воздуха ОФ

Фильтрация воздуха очистка газов



© 2025 chem21.info Реклама на сайте