Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопротивления инерционные

    Для увеличения критической скорости восходящего потока газов применяется наклонная установка сепараторов, причем оптимальным считается угол наклона 40— 45°. Однако наклонные инерционные сепараторы работают нормально только при небольшом количественном уносе жидкости. Основной недостаток всех инерционных каплеуловителей — возможность образования отложений пыли. Для предотвращения образования отложений рекомендуется применять профили с шагом /=90 мм Гидравлическое сопротивление инерционных каплеуловителей Д/Зс, Па, рассчитывается по формуле [c.141]


    К третьему уровню иерархии относятся явления, связанные с процессом взаимодействия системы кристалл — несущая (сплошная) фаза. Наглядную картину структуры связей ФХС демонстрирует обычно диаграмма взаимных влияний физических и химических явлений системы. При построении такой диаграммы ФХС представляем в виде набора элементов и их связей. При этом узлам диаграммы ставятся в соответствие отдельные явления или эффекты в системе, а дугам — причинно-следственные связи между ними (рис. 1). Растущая кристаллическая частица движется в объеме сплошной фазы под действием сил сопротивления, инерционных, тяжести, подвергаясь одновременно воздействию механизма переноса массы ПМ, энергии ПЭ и импульса ПИ через границу раздела фаз в направлении 1- 2 (где 1 означает принадлежность к сплошной фазе, 2 — к кристаллу). Процесс кристаллизации на частице идет при неравновесии химических потенциалов вещества в несущей фазе и в частице Д , неравновесности по температурам фаз Ат скоростной неравновесности А , т. е. при несовпадении скоростей фаз. Поэтому естественно принять, что рассматриваемая неравновесность гетерогенной системы и обусловливает совокупность явлений, составляющих механизм межфазного переноса при кристаллизации. Причем неравновесность гетерогенной системы в целом (по Ац, Ат, А ) обусловливает в качестве прямого эффекта (сплошные дуги) перенос массы через поверхность в направлении 1- 2 (дуги 1, 2, 3). Каждый вид неравновесности обусловливает прежде всего перенос соответствующей субстанции (дуги 4, 5) и одновременно оказывает перекрестное или косвенное влияние (пунктирные дуги) на перенос других субстанций (для ПЭ — дуги 6, 9 для ПИ — дуги 7, 8). [c.8]

    Изменение удельных нагрузок кг/см -) за один период колебаний (прямой и обратный ход пульсатора), возникающих за счет гидравлических сопротивлений, инерционных усилий и нагрузки на пульсатор, показано на рис. 10. [c.114]

    В производственных условиях во время формования на жидкие струйки, вытекающие из фильеры, воздействует ряд сил межфазные поверхностные натяжения (между вискозой и осадительной ванной, вискозой и поверхностью фильеры, поверхностью фильеры и осадительной ванны), силы гидродинамического сопротивления, инерционное усилие, растягивающее усилие и др. Поэтому прядомость лучше характеризовать по максимальной фильерной вытяжке вискозы во время формования. В этом случае учитывается влияние на прядомость всех сил, действующих на жидкую нить, в то время как при вытягивании жидкой нити стеклянной палочкой по методу Тиле по существу учитывается влияние только двух сил поверхностного натяжения жидкости и растягивающего усилия. — Прим. ред. [c.206]


    Механические колебания деталей машин и сооружений происходят под действием обычно небольших возбуждающих сил и основных сил инерции и упругого сопротивления. Инерционные свойства детали характеризуются величиной и распределением ее массы. Упругие свойства детали выражаются либо коэффициентами податливости, характеризующими перемещения участков детали под действием приложенных в различных ее местах единичных сил, либо коэффициентами упругости, характеризующими силовые реакции по отношению к единичным перемещениям. [c.333]

    На преодоление сил инерции среды затрачивается часть силы тяжести частицы. Кроме того, мелсду частицей и жидкостью действуют силы трения, вызванные вязкостью среды и зависящие от размера частиц. Сопротивление инерционных сил называется динамическим, а сопротивление сил трения — вязкостным. При падении крупных частиц (размером > 1 мм) сопротивление в основном носит динамический характер, а при падении мелких частиц [c.345]

    Первое слагаемое в правой части (1.14) учитывает потери давления вследствие вязкости жидкости, второе-инерционную составляющую сопротивления движению жидкости, связанную с криволинейностью и извилистостью норовых каналов. Из (1.14) следует, что при малых скоростях фильтрации квадратом скорости можно пренебречь, и градиент давления будет зависеть только от первого слагаемого, т.е. движение будет безынерционным, соответствующим закону Дарси. При больших скоростях фильтрации силы инерции становятся существенными и будут сопоставимы или даже преобладать над силами вязкости. [c.23]

    Здесь гц - активное сопротивление - инерционное сопротивление отверстия - упругое сопротивление емкости глушителя. [c.299]

    Во-вторых, сопоставление законов гидравлического сопротивления, диффузии, тепло- и массообмена четко показывает, как при переходе от вязкого к инерционному течению постепенно изменяется структура пронизывающего зернистый слой потока, основные градиенты сосредотачиваются непосредственно у поверхности элементов слоя и последние начинают работать практически независимо друг от друга. [c.3]

    Решение Стокса (II. 10) справедливо лишь при Ке- О. В отличие от внутренней задачи при обтекании шара оказалось, что инерционные члены в уравнении движения на больших расстояниях от поверхности шара нельзя отбросить даже при малых значениях Ке. Поэтому изменение характера зависимости сопротивления от критерия Ке происходит не скачком, как во внутренней задаче, а постепенно, растягиваясь на большой интервал значений Ке. [c.25]

    При использовании общего двухчленного уравнения (11.61) для константы Козени — Кармана в этом случае следует принять среднее значение К = 4,7 (см. раздел 11.5). Инерционная компонента коэффициента сопротивления /С для слоя из шаров )авна 0,45, а для несферических элементов, по данным Кармана 22], должна быть выше на 30°/о- Структура ансамблей слоя из несферических элементов должна сильно влиять на К , существенна и форма элементов. Так, значение К в слое из таблеток с закругленными концами оказалось на 12% ниже, чем в слое из таких же таблеток с торцами без закруглений [79]. Поэтому значения /Си, полученные из отдельных экспериментов, довольно существенно отличаются друг от друга [4, стр. 95]. [c.64]

    Рассмотрим способы определения основных характеристик потока при плоскорадиальном движении жидкости и газа с большими скоростями, когда причиной отклонения от закона Дарси становятся значительные инерционные составляющие общего фильтрационного сопротивления. [c.81]

    Формирование поля скоростей происходит под воздействием поступающего в -й элементарны объем ДУ газового потока, энергия которого обозначена на диаграмме связи элементом 8р. Энергия уходящего газового потока обозначена элементом Изменение кинетической энергии газа отображено узлом О и С-элементом, с которыми связаны упругие свойства газового потока. Затраты энергии на сопротивление слоя потоку газа изображены на диаграмме узлом 1 и Л-элементом, который является обобщенным коэффициентом трения. Передача импульса энергии газового потока твердым частицам представлена ТР-элементом с коэффициентом передачи 8р 8р — суммарное лобовое сечение частиц -го элементарного объема. Элемент 1, отображающий инерционные свойства движущегося материала, и 5 -элемент, соответствующий затратам энергии на преодоление силы тяжести с учетом силы Архимеда, объединены единичным узлом. Согласно методике составления уравнений по диаграмме связи аналитическая форма баланса энергии для Д имеет вид [c.231]

    Исследованы фильтровальные диски диаметром 5 см, полученные прессованием волокон из нержавеющей стали до пористости 40—95% и затем спеканием при 1100—1300 °С диаметр волокон 8, 25 и 50 мкм при большом отношении длины к диаметру [38]. Установлено, что такие фильтровальные перегородки задерживают частицы меньшего размера с большей вероятностью по сравнению с перегородками из спекшихся порошков поры исследуемых перегородок меньше закупориваются и перегородки легче регенерируются. При исследовании проницаемости учтены сопротивление трения и инерционное сопротивление в соответствии с известной зависимостью (см. с. 24). [c.381]


    В эксплуатационных условиях 65—70 % инерционно-масляных воздушных фильтров не соответствует техническим условиям (ТУ) по уносу моторного масла в двигатель, а их гидравлическое сопротивление уже при наработке 40—50 тью. км- на 45—55 % выше предусмотренного заводами-изготовителями. При наработке 10 тыс. км в ванне (вместимостью 0,5 л) воздушного фильтра остаются только следы масла, а его унос способствует образованию в продуктах сгорания канцерогенных веществ. [c.158]

    Отличные о г приведенных выше результаты, полученные при установке плоской решетки с очень большим коэффициентом сопротивления (Ср = = 150), обусловлены влиянием инерционных сил. Струйки тока при растекании по фронту решетки получают направление, обратное направлению входа. Поэтому, выходя из отверстий решетки почти параллельно ее плоскости вблизи передней стенки аппарата, поток резко изменяет свое направление (на 90°) в сторону выхода из аппарата. При таких условиях часть наиболее крупных частиц под действием возникающих на повороте центробежных. . ил выделяется из потока в сторону передней стенки, создавая здесь повышенную концентрацию пыли. [c.314]

    Инерционным сопротивлением (не зависящим от вязкости и, следовательно, от температуры жидкости) обладает диафрагма с круглым отверстием (рис. 13.6, 3). Во избежание засорения линии диаметр отверстия не должен быть слишком малым. Увеличение сопротивления осуществляется установкой пакета шайб (рис. 13.6, е) или введением в отверстие дроссельной иглы (рис. 13.6, ж). Тонкая настройка диафрагменного дросселя достигается тем, что на цилиндрической части перекрывной иглы выполнены прямоугольные или угловые канавки с постоянным или переменным сечением по ходу иглы (рис. 13.6, з). Подбором профиля канавок можно изменять характеристику дросселя Др = [c.177]

    Характеристика процесса включает в себя его потенциал, емкость, сопротивление и время запаздывания. Емкость представляет собой изменение количества энергии или материала, приходящееся на единицу изменения регулируемого параметра время запаздывания — промежуток времени мел<ду моментом изменения входного сигна ка и началом изменения выходной величины. Время запаздывания является характеристикой процесса, его нельзя путать с инерционностью контрольно-измерительных приборов. [c.295]

    Приведены формулы для расчета распределения скоростей потока, набегающего на зернистый слой, по длине радиального реактора, Течение в зернистом слое рассмотрено как марковский процесс, усредненные параметры которого заданы плотностью вероятности обнаружения некоторого свойства или состояния движущейся среды в данной области пространства. Приведены уравнения для расчета коэффициентов переноса вещества, энергии и импульса в подвижной фазе, а также инерционной составляющей среднеобъемной силы сопротивления. Табл. 3. Библиогр. 16. [c.176]

    Здесь F T — соответствует силе, действующей на частицу при стационарном обтекании. Нестационарная составляющая F определяется, с одной стороны, инерционным сопротивлением потока и, с другой стороны, процессом формирования картины вязкого обтекания [17]. [c.17]

    К третьему уровню иерархии ФХС (рис. 1.1) можно отнести следующие явления [1, 20, 21 ]. Элемент дисперсной фазы (пузырь, капля), в котором протекают химические реакции как в объеме, так и на межфазной границе, движется в объеме сплошной фазы под действием сил Архимеда, инерционных сил и сил сопротивления, подвергаясь одновременно воздействию механизма переноса массы (ПМ), энергии (ПЭ) и импульса (ПИ) через границу раздела фаз в направлении 1 2. В качестве исходной причины возникновения межфазных потоков субстанций, обусловливающей всю совокупность явлений, составляюпщх механизм межфазного переноса, естественно принять неравновесность гетерогенной [c.26]

    При увеличении числа оборотов перемешивающего устройства возрастает сопротивление среды вращению, возникает и интенсифицируется турбулентный режим перемешивания (Ке > 100). При высокой степени турбулентности (Ке > 10 ) критерий мощности практически не зависит от критерия Ке . Эта область называется автомодельной, в ее пределах расход энергии определяется только инерционными силами. [c.449]

    Газовоздухоочистные аппараты можно разделить на несколько групп в соответствии с принципами, на которых основаны процессы очистки газа (воздуха) от взвешенных в нем частиц. Рассмотрим сопротивление инерционных жалю-зийных пылеотделителей, циклонов - одиночных, групповых и батарейных, мокрых газоочистных аппаратов, фильтров - пористых и тканевых, электрофильтров. [c.504]

    Ректификация смесей с близкими значениями летучестей компонентов в тарельчатых или насадочных аппаратах требует большого числа узлов контакта фаз или значительной высоты насадки, а следовательно, большой высоты колонн. Это обуславливает большую металлоемкость, высокое гидравлическое сопротивление, инерционность пускового периода и отклонения от оптималыюга режима, усложняющие автоматизацию процесса и большую загрузку по жидкости и пару, определяющую энергозатраты. Фактор эффективности лучших конструкций этих аппаратов не превышает 11 м 1сек  [c.255]

    Хорошая согласованность соотношения (1.14) с данными промысловых и экспериментальных наблюдений была установлена в многочисленных работах советских и зарубежных исследователей. Это свидетельствует о том, что данное соотношение представляет нечто большее, чем простую эмпирическую формулу, поскольку оно хорошо выполняется даже для весьма больших значений скорости фильтрации. Физический смысл этого заключается в том, что при больших скоростях быстропеременное движение в порах вследствие извилистости норовых каналов сопряжено с появлением значительных инерционных составляющих гидравлического сопротивления. С увеличением числа Рейнольдса квадратичный член в выражении (1.14) оказывается преобладающим, силы вязкости пренебрежимо малы по сравнению с силами инерции, и (1.14) сводится тогда к квадратичному закону фильтрации, предложенному А. А. Краснопольским. Он справедлив в средах, состоящих из частиц достаточно крупных размеров. [c.23]

    Первый член правой части уравнения (1.93) представляет сипу Стокса, второй - инерционную составляющую силы сопротивления за счет присоединенной массы твердой сферы. Третий член, так называемая сила Бассэ, учитывает мгновенное гидрощшамическое сопротивление и вносит существенный вклад в общее сопротивление в случае движения частицы с большим ускорением. При больших значениях Ке составляющая силы сопротивления, обусловленная присоединенной массой, равна /п где Лэ - радиус эквивалентного шара. [c.27]

    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    Так как неизвестны силы сопротивления в уплотнениях и инерционная сила, действующая в период ускоренного движения поришя, вводят коэффициент запаса ио тяговому усилию k 1,6. .. 2 исходное уравнение равновесия поршня имеет вид [c.139]

    Дроссель — местное гидравлическое сопротивление на пути течения жидкости для регулирования расхода жидкости частичным сбросом ее в сливную линию или для создания необходимого перепада давления. По принципу действия различают дроссели вязкостного и инерционного сопротивлений. В первых перепад давления определяется в основном сопротивлением дроссельного канала значительной длины, во вторых — вихреобра-зованием при внезапном расширении потока. [c.177]

    Структурный граф (СТГ) ХТС — это топологическая модель, отражающая при анализе гадравлических и тепловых процессов взаимосвязь некоторых простых идеальных компон бнт системы (источники потенциальной и кинетической энергии, резисторы или, сопротивления, раоовивающие энергию ТС емкости, накапливающие вещество или энергию ХТС и характеризующие свойство упругости вещества индуктивности, характеризующие инерционный эффект массы в движущемся потоке вещества). [c.45]

    Обтекание сферы при малых, но конечных значениях чисел Re исследовалось Уайтхедом [2], который к решению уравнений Навье—Стокса применил метод последовательных приближений, разлагая поле потока в ряд по степеням критерия Рейнольдса. Однако это решение противоречило граничным условиям вдали от сферы. Причину трудности раскрыл Озеен [3] отношение отброшенных инерционных членов к вязким — порядка Re-а (оно мало вблизи тела при малых Re, но становится сколь угодно большим вдали от него). Решение Стокса уже непригодно в тех областях, где Re имеет иорядок единицы. Озеен для решения подобной задачи использовал линеаризованную форму инерционных членов, заменив uVu на vVv. Уравнения Озеена имеют решение, пригодное во всем иоле течения при Re 1 и совпадающее вблизи сферы с решением Стокса. Согласно Озеену, коэффициент сопротивления для твердой сферы может быть вычислен по формуле [c.248]

    Если скорость изменения напряжения, подаваемого на ячейку, велика (до нескольких десятков вольт в 1 с), визуальные и самопишущие регистраторы, в силу их инерционности нельзя использовать, вместо них индикатором служат электронно-луче-вые трубки. Полярографические приборы, в которых скорость изменения напряжения велика и полярографическая кривая регистрируется на экране осциллографа, называют осциллографи-ческими полярографами. На полярографическую ячейку накладывается постоянное напряжение от потенциометра полярографа и переменное напряжение от генератора, изменяющееся во времени линейно, по форме пилы , треугольника, трапеции. Напряжение от ячейки подается на горизонтальные пластины элек-троно-лучевой трубки, падение напряжения на сопротивлении 2 (рис. 2.25), пропорциональное току ячейки, — на вертикальные пластины. Во всех случаях на экране регистрируется вольтамперная кривая соответствующей формы (рис. 2.26). [c.147]

    Движение газа через взвешенный в восходящем потоке слой зерненного материала. При восходящем потоке газа (паров или жидкости) через плотный слой зерненного материала с увеличением скорости потока увеличивается сопротивление слоя и ослабляется дапление частиц друг на друга. При достижении некоторого критического значения скорости сонротивление слоя становится равным весу слоя, частицы перестают оказывать давление друг на друга и сло11 переходит во взвешенное состояние в этих условиях у частиц возникает возмо кпость перемещаться в пределах слоя. При дальней-Щ()Д1 уиеличопии скорости Ж > Ж силы трения и инерционные силы, действующие на частицу со стороны потока, превышают вес частицы и поднимают ее, расстояние люжду частицами увеличивается, т. е. возрастает порозность слоя е и скорость потока в поровом [c.603]

    В физическом смысле параметр инерционного столкновения з представляет тормозной путь частицы с начальной скоростью 2Vй D в покоящейся среде при условии, что сопротивление среды лежит в вязкой области. Многие исследователи, особенно немецкие исследователи считают, что тормозный путь можно выразить, как коэффициент инерционного столкновения, умноженный на О (т, е. pчUod /18f ,) [Бремлитрекс].  [c.303]


Смотреть страницы где упоминается термин Сопротивления инерционные: [c.85]    [c.44]    [c.44]    [c.60]    [c.68]    [c.12]    [c.109]    [c.317]    [c.407]    [c.140]    [c.18]    [c.264]   
Насосы и компрессоры (1974) -- [ c.108 , c.122 ]

Насосы и компрессоры (1974) -- [ c.108 , c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Термопреобразователи сопротивления, инерционность



© 2024 chem21.info Реклама на сайте