Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение коэффициентов эмпирических формул

    Определение коэффициентов эмпирической формулы. Значение коэффициентов в эмпирической формуле берут из таблиц справочников или определяют графически. Например, истинную теплоемкость газов в зависимости от температуры вычисляют по формулам  [c.21]

    Определение коэффициентов эмпирических формул [c.15]

    Подход К определению <7 , базировался на двух направлениях. Первое из них связано с формальным рассмотрением физической сущности уравнения (2.5.2) и получением выражения для в виде эмпирических формул, основывающихся на экспериментальном исследовании процесса. В ранних работах, связанных с исследованием конденсации водяного пара в присутствии воздуха, влияние инертного газа учитывалось в уменьшении коэффициента теплоотдачи, соответствующего конденсации чистого пара. Результаты экспериментальных исследований, сведенные к графической зависимости ак/ак = /(с), где Ко — коэффициент теплоотдачи при конденсации чистого пара, показали, что при относительной концентрации воздуха с = 0,04 значение Ск/ак, 0,2. При больших концентрациях с опытные данные начинают расходиться, поэтому коэффициент теплоотдачи и, следовательно, представлялся на основании экспериментальных данных как функция не только с, но также массовой скорости парогазовой смеси и среднелогарифмического значения парциального давления инертных газов. Сюда могут быть отнесены работы Л. Д. Бермана, в которых даются оценки эмпирическим формулам определения к, указываются области применения этих формул, приводятся данные экспериментального исследования влияния скорости парогазовой смеси на интенсивность конденсации, а также работы ряда авторов, исследовавших конденсацию парогазовых смесей, отличных от смеси водяного пара и воздуха. Понятно, что результаты всех этих работ не могут быть использованы в общей математической модели конденсатора, поскольку они справедливы только при условиях, совпадающих с условиями проведения эксперимента. [c.71]


    Рис. 1-1. графическое определение коэффициентов эмпирических формул. [c.15]

    Коэффициент массопередачи р от капель (пузырей) и к ним может быть определен по эмпирической формуле  [c.157]

    Коэффициент подогрева для компрессоров парокомпрессионных трансформаторов тепла может быть ориентировочно определен по эмпирической формуле И. И. Левина [37] [c.84]

    Коэффициент теплопередачи в пластинчатых калориферах может быть определен по эмпирическим формулам при обогреве паром [c.362]

    Коэффициент теплопередачи может быть также определен по эмпирической формуле  [c.49]

    Значения ВЕП часто находят экспериментально (вместо определения коэффициентов массопередачи) эмпирические формулы для расчета /i, и Лц в фазах, по которым, пользуясь принципом аддитивности, определяют ВЕП, будут приведены ниже при рассмотрении конкретных массообменных процессов для аппаратов различных конструкций. [c.417]

    Коэффициент теплопередачи при кипении воды зависит от давления кипящей воды и может быть определен по эмпирической формуле [3.25] [c.139]

    Коэффициент сопротивления трения в змеевиках из круглых труб может быть определен по эмпирической формуле [76], которая хорошо согласуется с экспериментом при 13,5<К<5000  [c.93]

    Определение динамического коэффициента вязкости для жидкостей (т1к,Лх). Бретшнайдер [69], отмечая относительно большие погрешности в определении динамического коэффициента вязкости жидкостей по эмпирическим формулам, включающим структурные группы атомов, предлагает для расчетов использовать формулы Саудерса или Томаса. Первая из них дает хорошее совпадение с экспериментальными данными для органических жидкостей, вторая — для жидкостей в температурном интервале, в котором приведенная температура Гпр не превышает 0,7. Формула Саудерса имеет следующий вид  [c.78]

    Величина а, а следовательно, Сд/0, являются функциями коэффициента сопротивления решетки Св- Для определения этой зависимости были проведены специальные опыты [176, 220] с проволочными (прутковыми) решетками (рис. 5.2). На основании результатов этих опытов была предложена эмпирическая формула, справедливая при Се > 0,7  [c.120]

    Для различных условий работы нужны смазки с различными механическими свойствами, поэтому необходимо оценивать смазки не по абсолютной величине сбрасывания, а по какому-то коэффициенту с учетом пенетрации (поскольку механические свойства смазок оцениваются пока по величине их пенетрации). В связи с этим разработана эмпирическая формула для определения максимального сбрасывания, допустимого для данной консистенции смазки  [c.713]


    Средний коэффициент теплоотдачи при капельной конденсации насыщенного водяного пара на вертикальной поверхности и горизонтальной трубе может быть определен приближенно по эмпирическим формулам [92] [c.191]

    Коэффициент теплоотдачи со стороны продукта авн для конкретных процессов теплообмена и определенной геометрии поверхности теплообмена обычно находят из опыта и представляют в виде эмпирических формул, которые позволяйт определить искомый коэффициент [c.37]

    Определению коэффициента перемешивания е посвящен ряд исследований. По данным Американского института инженеров-химиков [8]], коэффициент е для колпачковых (с колпачками диаметром 76 мм) и ситчатых тарелок рассчитывают по эмпирической формуле  [c.552]

    Изучается массообмен в наиболее распространенных тарельчатых аппаратах. В литературе [3] рекомендуются формулы для определения коэффициентов массоотдачи и массопередачи для этих аппаратов, нуждающиеся в уточнении. Поэтому исследование массообменных процессов (абсорбции и ректификации) и расчет массообменных аппаратов до настоящего времени проводят с точки зрения статики процесса кинетические особенности процесса учитываются введением эмпирического коэффициента эффективности (коэффициента обогащения или коэффициента полезного действия) тарелки. [c.45]

    Коэффициент М — М М2М , где Mi учитывает возможное определение одной характеристики прочности по другой на основании эмпирических формул и связанные с этим переходом неточности — число изделий, подвергающихся проверочным испытаниям от партии Aia— влияние величины изделия на его прочность. [c.84]

    Коэффициент а принимался по формуле для турбулентно-турбулентного режима ), а для определения 2 . установлена эмпирическая формула [c.128]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    Метод наименьших квадратов представляет собой наиболее точный метод определения коэффициентов эмпирических формул. Пример 1. 1. В результате опытов получены значения перепадов давления Др (в кгс1м -) в функции от скорости воздуха Шо (в м1сек) в отверстиях ситчатой тарелки, которые приведены в левой части табл. 1-2. Найти зависимость перепада давления (потери напора) Ар от скорости воздуха Шо. [c.17]

    Метод элементного анализа без взвешивания основан на определении эмпирической формулы rHpNgOuS , т. е. на определении стехиометрических коэффициентов г, р, q, и, v [49, 81, 101, 123—126]. При классическом определении процентные доли определяемых элементов делят на соответствующие атомные массы, а результаты — на самую малую или на одну из них или же умножают конечные результаты на малую целую величину, чтобы получить стехиометрические коэффициенты эмпирической формулы в форме целых чисел. С этой це ью для анализа используют какой-либо инструментальный метод, в котором сигналы детектора для отдельных элементов сопоставляются с соответствующими сигналами, полученными при анализе стандартного вещества известного состава. [c.31]

    Таким образом, диффузионное неренапряжение определяется в первую очередь предельной плотностью тока щ1) пли величиной константы /Сд, Предельная плотность тока по теории Нернста — Бруннера, как это следует из ург.внения (15.28), зависит прежде всего от коэффициента диффузии соответствующих частиц , их заряда 2 , начальной концентрации Сг° (или, что то же самое, концентрации за пределами диффузионного слоя) и толщины диффузионного слоя б. Числа переноса данного внда ионов ii, как ул< е отмечалось, могут быть сделаны равными нулю кроме того, миграция вообще отсутствует в случае незаряженных частиц. Коэффициент диффузии можно либо рассчитать, либо заимствовать из экспериментальных данных определение начальной концентрации С также не представляет затруднений. Наименее определенной величиной является толщина диффузионного слоя, которая не может быть рассчитана в рамках теории Нернста—Бруннера. Ее определяют экспериментально, чаще всего из измерения предельной илотности тока. Опытные данные показывают, что б весьма мало зависит от состава раствора, но замс но меняется при изменении режима движения электролита. Эту зависимость можно передать эмпирической формулой [c.310]


    Скляр и Лизогуб [18] детально исследовали состав конденсированных ароматических углеводородов в керосино-газойлевых фракциях (200—400° С) двух нефтей месторождений Западной Украины (Долинского и Битковского). Это едва ли не первая попытка количественной оценки содержания конденсированных ароматических углеводородов в сырых нефтях. В отличие от упоминавшихся работ [2— 9], в которых нафталин и его гомологи выделялись препаративно из их концентратов, Скляр и Лизогуб проводили количественную оценку соответствующих конденсированных ароматических углеводородов на основании ультрафиолетовых спектров узких (трехградусных) нефтяных фракций, в которых сосредоточены эти углеводороды. Пользуясь коэффициентами поглощения индивидуальных углеводородов в определенных (характеристических) областях ультрафиолетового спектра, они предложили эмпирические формулы  [c.260]

    Существует несколько эмпирических расчетных формул для определения коэффициента теплообмена в плотном слое. Эти формулы выведеиы в предположении, что газовый поток равномерно распределен по слою. Практически это условие не соблюдается, и каждая формула может быть пригодна лишь при степени равномерности газораспределения (и порозности слоя), близкой к той, которая существовала при проведении опытов. [c.588]

    В восьмой главе на основании формулы Лоренц-Лорентца получены уравнения для расчета показателя преломления полимеров и сополимеров по их химическому строению. Для определения коэффициента оптической чувствительности по нагфяжению предложены эмпирический и полуэмпири-ческий подходы, в коох)рых оценивается вклад каждого атома и типа межмолекулярного взаимодействия соответствующим инкрементом. С использованием полученных зависимостей величины коэффициента оптической чувствительности по напряжению от химического строения повторяющегося звена полимера оценен вклад различных атомов и полярных фупп на величину такого коэффициента, и предложен полимер с уникальными для метода динамической фотоутфугости свойствами. [c.16]

    Экспериментальное определение коэффициента сжимаемости представляет известные трудности, поэтому важно было установить связь его с другими, более легко определяемыми характеристиками топлив. Работами Д. Н. Вырубова [7] и других исследователей была показана зависимость между величиной коэффициента сжимаемости и удельным весом дизельных топлив. Установлено, что для пределов изменения удельного веса топлив от 0,80 до 0,95 значения коэффициентов сжимаемости с достаточной для практических целей точностью могут быть выражены следующей эмпирической формулой  [c.64]

    Из эмпирических формул, которые применялись в расчетной практике для определения коэффициента прямой отдачи ц, можно, например, назвать, формулы Вильсона, Лобо и Хоттеля [127], формулы Л. Д. Нерсесова [128], Л. М. Гурвнча [129] и др. [c.501]

    Экспер [мептальные методы нахождения Ра основаны на измерении абсолютного числа атомов определяемого элемента, находящихся в пламени. Для этого, папример, необходимо знать абсолютное значение коэффициента поглощения, если используется атомно-абсорбционный метод. Уже эта процедура экспериментально довольно сложна и требует специальной аппаратуры. В противном случае необходимо сделать ряд существенных допущений. Кроме того, точное знание таких спектроскопических характеристик, как вероятности атомных переходов, обязательно. Для расчета общей концентрации элемента в пламени часто используют эмпирическую формулу, связывающую эту величину с концентрацией элемента в распыляемом растворе. Эта формула учитывает расход раствора и газа, абсолютную температуру пламени, концентрацию элемента в растворе и т. п. Отношение экспериментально найденной концентрации свободных атомов к общей концентрации элемента дает степень атомизации Ра. Очевидно, что точность определения ря очень мала. [c.61]

    В ряде важных прикладных задач, например при применении термоанемометров, относительная длина проволочки датчика LjD намного меньше Ю обычно величина отношения L D около 200. Тогда при обработке выходного сигнала термоанемометра по корреляционным формулам, полученным для длинных проволок, требуется с большой точностью учитывать концевые эффекты, так как влияние их велико. Точные оценки влияния концевых эффектов отсутствуют. Потери тепла теплопроводностью к державкам (в осевом направлении) можно рассчитать (работы [65, 108]), но влияние концевых эффектов на течение оценить очень трудно. Этот вопрос обсуждается в статье Гебхарта и Пера [57]. Но многие исследователи определяли влияние концевых эффектов экспериментальным путем. Морган [122] предложил эмпирические формулы для оценки возможного увеличения коэффициента теплоотдачи из-за влияния конечной длины цилиндров в виде отношения б = = (Nu — Nuoo)/Nuoo, где Nu — число Нуссельта для проволочки конечной длины, а Nu — число Нуссельта, определенное при очень большом относительном удлинении проволочки L/D Ч Формулы имеют вид [c.290]

    В дальнейшем аналитическими решениями Грэца, Нуссельта, Латцко, Лейбензона и др было установлено, что коэффициент теплоотдачи за участком стабилизации остается постоянным на протяжении всего канала. Это теоретическое доказательство послужило основанием для исследования теплоотдачи в каналах постоянной длины. Если канал в опыте длиной I > 50 то считается, что эмпирическую формулу, полученную при указанных условиях эксперимента, можно распространить на любые температурные и геометрические условия. Постоянство а за участком стабилизации справедливо при движении жидкости, близком к изотермическому. С изменением температуры жидкости меняются и условия теплоотдачи. Эмпирическую формулу, полученную при определенных температурных и геометрических условиях нельзя распространять на другие неподобные условия. Распространение этих формул, имеющих частный характер приводит к размерам аппарата не соответствующим условиям эксплуатации. Это особенно резко проявляется при высоких температурах нагрева. В экспериментальной практике не соблюдаются основные теоремы подобия. Излагая основные положения теплового подобия, М. В.Кирпичев и М. А. Михеев подчеркнули, что подобие температурных полей и теплообмена может быть достигнуто в другом теплообменном аппарате только в том случае, когда оба аппарата геометрически подобны. [c.32]


Смотреть страницы где упоминается термин Определение коэффициентов эмпирических формул: [c.171]    [c.264]    [c.91]    [c.104]    [c.72]    [c.76]   
Смотреть главы в:

Расчеты по процессам и аппаратам химической технологии -> Определение коэффициентов эмпирических формул




ПОИСК





Смотрите так же термины и статьи:

Коэффициент определение

Коэффициент определение по коэффициентам

Коэффициент формулы

Эмпирическая формула

определение коэффициенто



© 2025 chem21.info Реклама на сайте