Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формирование структуры и свойств УВ из ПАН

    Сушка шариков. Сушка шариков катализатора состоит из процесса испарения влаги с поверхности и перехода (диффузии) влаги из пор шариков к их поверхности. При высушивании сначала нагреваются внешние слои шариков, а затем внутренние. В течение всего процесса сушки происходит диффузия паров интермицеллярной жидкости через поры шариков. При этом скорость диффузии паров влаги должна быть ограничена во избежание нарушения прочности шариков в результате возникающих напряжений. Удаление влаги из шариков катализатора ведет к уменьшению объема примерно на 1/11 их начального объема и одновременно к изменению физических свойств шариков, т. е. происходит дальнейшее формирование структуры и повышение прочности шариков. [c.66]


    Широко используемое в настоящее время понятие кристалличности не отражает многочисленных особенностей структуры [54] и является понятием в известной степени условным. Очевидно, по тем же причинам определение степени кристалличности различными методами (рентгенографически, ИК-спектроскопией, по плотности полимера или по спектрам ЯМР) часто не дает сопоставимых результатов. Можно представить себе случай, когда две мембраны имеют одинаковую степень кристалличности в пачках , но формирование структуры в одном случае остановилось на уровне пачек , во втором — завершилось образованием сферолитов различных размеров. Упорядоченность в первом случае меньшая, чем во втором, и свойства этих мембран должны быть различными. [c.65]

    Стадия охлаждения и кристаллизации служит для формирования структуры смазок, скорость охлаждения в значительной степени определяет эксплуатационные свойства смазок. [c.299]

    Фиалков А. С. Формирование структуры и свойств углеграфитовых материалов. М., Металлургия , 1965. [c.293]

    Далеко не все мыла могут быть использованы для приготовления смазок. Определяющую роль в формировании структуры и свойств смазок играют валентность и свойства катиона, состав и строение аниона используемого мыла. При прочих равных условиях наиболее крупные волокна характерны для натриевых смазок (до 80 мкм), короткие —для литиевых (2—5 мкм) и для кальциевых (1—3 мкм) смазок. Дисперсная фаза алюминиевых смазок образована мелкими аморфными сферическими частицами (не более 0,1 мкм). [c.358]

    В дальнейшем устраняется механической обработкой. Большое влияние на процессы кристаллизации и формирования структуры смазки оказывают ПАВ (свободные кислоты, глицерин и т. п.) И присадки, вводимые в смазки для улучшения их свойств. [c.367]

    Формирование структуры и свойств углерод-коксовой матрицы зависит от условий термообработки, которые можно условно разделить на несколько стадий  [c.89]

    Скрипченко Г.Б. Надмолекулярная организация структуры в углях и углеродных материалах как определяющий фактор формирования структуры и свойств ................................................................186 [c.15]

    Скрипченко Г.Б., Селезнев А.Н. Формирование структуры н свойств в каменноугольных пеках при нагреве ...........................................188 [c.15]

    Надмолекулярная организация структуры в углях и углеродных материалах как определяющий фактор формирования структуры и свойств [c.186]

    Эргономический анализ технологического оборудования и процессов предполагает детальное изучение всего разнообразия характеристик, которыми определяется состав и структура психофизиологической деятельности человека, особенности его взаимодействия с машиной и средой на материальном, энергетическом , информационном и других уровнях. Конечная цель эргономического изучения техники состоит в формировании ее математической модели (производственного процесса, ЧМС) с оценкой состава, структуры, свойств, характера их изменения и разностороннего согласования с требованием человека и других компонентов системы. [c.43]


    На практике очень трудно избежать формирования структур при любых процессах переработки, за исключением таких сравнительно медленных процессов, как формование разливом и компрессионное прессование. Часто, однако, формирование структур в процессах переработки носит случайный характер, плохо поддающийся объяснению, и кажется неизбежным злом (особенно в тех случаях, когда оно проявляется в потере стабильности размеров). С другой стороны, в переработке полимеров существуют классические примеры целенаправленного формирования структур при производстве ориентированного волокна (экструзия с последующей вытяжкой) и при получении пленок с одно- и двухосной ориентацией методом экструзии или при изготовлении пленок методом полива на барабан с целью формирования структур, придающих пленке необходимые механические и оптические свойства. [c.45]

    Формирование структур используется не только при переработке полимеров. Этот технологический прием давно применяется в металлургии. В качестве примера можно привести создание широкого диапазона различных свойств у стали путем термообработки. [c.45]

    При формировании структур в равновесных и строго контролируемых условиях можно получать изделия с совершенно уникальными свойствами. Однако, как это было отмечено Максвеллом [1], промышленные технологические процессы изготовления изделий должны проводиться при скоростях, исключающих возможность формирования равновесных структур. Лишь в тех случаях, когда эти неравновесные структуры оказываются принципиально отлич- [c.45]

    Выявление закономерностей термолиза нефтяного сырья приобретает особую важность, в частности, при разработке технологии производства и улучшения качества углеродных материалов и изделий на их основе. Основным вопросом при этом является изучение и регулирование физико-химических свойств реакционной массы, а также параметров фазовых переходов в процессе термополиконденсации нефтяных остатков и механизма формирования структуры углеродных материалов, связанных с изменением размеров и природы частиц, входящих в состав дисперсной фазы. Указанные процессы происходят при получении нефтяного пека, когда реакционная масса сырья представляет собой дисперсную систему, последовательные этапы превращений в которой определяют структурно-механические, волокнообразующие, связующие и другие свойства конечных продуктов термолиза. [c.131]

    Промышленные углеграфитовые материалы состоят из нерегулярно агрегированных дефектных кристаллитов. Сами кристаллы могут содержать набор ар -(преимущественно), зр - и ар-связей, определяющих их свойства. Исследование и количественная оценка распределения этих связей (особенно зр и зр ) методом спектрометрии комбинационного рассеяния (Ра-ман-спектроскопии) представляют значительный интерес при изучении механизма формирования структуры и свойств. [c.24]

    ВЛИЯНИЕ ДИСПЕРСНОСТИ И ФАКТОРА ФОРМЫ ЧАСТИЧЕК НА ФОРМИРОВАНИЕ СТРУКТУРЫ И СВОЙСТВ [c.25]

    Распределение частичек углеродных порошков по размерам и углеродных волокон по диаметрам также подчиняется описанным законам. Это обстоятельство должно обязательно учитываться при оценке различных факторов, определяющих формирование структуры и свойств всех классов материалов. [c.27]

    Адгезия между частичками кокса и связующим является одним из показателей, определяющих условия формирования структуры и свойств композиций кокс—связующее. В числе других факторов адгезия определяется смачиваемостью поверхности частичек связующим. [c.149]

    Роль поверхностно-активных веществ в формировании структуры и свойств углеграфитовых материалов не ограничивается только описанными выше задачами, а позволяет обеспечить [2-146]  [c.153]

    Общие закономерности формирования структуры и свойств композиции антрацит—связующее соответствуют описанным в главе второй для смесей кокс—связующее. [c.174]

    Влияние подложки на формирование структуры и свойств ПУ в случае изготовления крупногабаритных изделий чрезвычайно велико. Особенно важное значение имеет совместимость подложки и покрытия при охлаждении. Так как коэффициенты линейного термического расширения подложки и ПУ различны, при охлаждении наблюдается гистерезис изменения линейных размеров ПУ под влиянием подложки, а также вследствие различий в термическом расширении ПУ в двух взаимно перпендикулярных направлениях (рис. 7-16). В связи с [c.441]

    Важную роль в формировании структуры и свойств СУ играют состав окружающей среды и давление выделяющихся газов. Предпочтительной атмосферой для получения СУ является азот, хотя СУ может быть получен и в углеродной засыпке. [c.466]

    ФОРМИРОВАНИЕ СТРУКТУРЫ И СВОЙСТВ УВ ИЗ ПАН [c.588]

    Технология. Формирование структуры и свойств УВ из ГЦ-волокон определяется их видом [9-134], условиями плетения, плотностью по утку и по основе получаемых тканей и лент. В производстве УВ, как правило, применяются высокопрочные вискозные кордные волокна. [c.617]


    Однако на первом этапе исследований а тем более при расчетах по прогнозированию свойств катализатора, до проведения экспериментальных работ необходимые данные о параметрах моделей, естественно, не известны. Выход заключается в выработке стратегии исследования в виде многоэтапной итеративной процедуры принятия решений (ППР) 1) прогноз химического состава катализатора 2) по данным первого этапа и по имеюш имся аналогам получение начальных оценок скорости реакции 3) начальный ири-ближенный прогноз качественного характера о целесообразной текстуре катализатора (например, круннонористый с малой поверхностью, либо мелкопористый с развитой поверхностью и т. п.) 4) экспериментальная проверка результатов качественного прогноза текстуры катализатора 5) экспериментальное определение кинетики процесса на удовлетворяюш,ем требованиял катализаторе пз числа занрогнозированных 6) расчет оптимальной текстуры катализатора и ее приспособление к реальным возможностям синтеза катализаторов 7) выбор способа синтеза приемлемого катализатора 8) выбор способа формирования структуры катализатора 9) приготовление образца катализатора и его опробование. [c.121]

    Стабильность структуры катализаторов при нагревании зависит не только от физических свойств активного материала, но и от природы носителя [1]. Вследствие разной поверхностной подвижности атомов на различш 1х поверхностях природа носителя влияет и на размеры, и на форму дискретных частиц активного компонента, образующихся при нагревании контактов. Кристаллизация одного и того же вещества на разных носителях приводит к формированию структур, различающихся как внешней формой кристаллов, так и их размерами. [c.62]

    Проблема исследования гидродинамической обстановки в слое находится в прямой зависимости от его физико-механических свойств и способов формирования структуры, основной характеристикой которой является пористость (порозпость) и связанная с ней проницаемость. [c.24]

    Не умаляя значения перечисленных факторов в обеспечении прочности структур, необходимо подчеркнуть, что основная роль в формировании механических свойств тел принадлежит мелсча-стичным взаимодействиям качеству этого взаимодействия и его силе, определяющей прочность контактов. При отсутствии притяжения между частицами дисперсной фазы (твердыми, жидкими или газообразными) дисперсные системы ведут себя как ньютоновские жидкости. Ван-дер-ваальсовы силы притяжения между частицами обеспечивают подвижную структуру дисперсной системы. Если между частицами образуются химические связи, то пространственная структура становится жесткой и неподвижной. Как уже указывалось, межчастичное взаимодействие взято за основу [c.383]

    Повышение температуры в большинстве случаев вызывает уменьшение предела прочности смазок. Темпе ратура, при которой предел прочности приближается к нулю, свидетельствует о переходе смазки из пластичного состояния в жидкое и характеризует верхний температурный предел работоспособности смазок. Все факторы, влияющие на формирование структуры смазок (тип и концен11рация загустителя, химический состав и свойства дисперсионной среды, состав и концентрация поверхностно-активных веществ и, наконец, технологические, особенности приготовления смазок), влияют и на их прочность. [c.359]

    Формирование частиц мыльного загустителя проходит через следующие стадии образование центров кристаллизации (зародышей), рост и развитие этих центров. Первичный центр кристаллизации мылнной частицы представляет собой определенную комбинацию молекул мыла (ассоциат), дальнейший рост которого и образование частицы оптимальных размеров осуществляются в результате диффузии молекул мыла из пе1ресыщенного раствора к поверхности кристаллического зародыша. Таким образом, формирование структуры мыльных смазок связано с образованием ми-.целл, последующего построения из них волокон (надмицеллярных структур) и формирования структурного каркаса смазки, придающего ей пластичность и другие характерные свойства. [c.364]

    Традиционный подход в изучении механических свойств мета1шов однозначно связывает их с исходной структурой материала При такой точке зрения формирование указанных свойств заканчивается на этапе изготовления конструкции, а их изменение в период эксттчуатации не является определяющим. Хорошо известное явление охрупчивания, то есть повьппение временного сопротивления ав и предела текучести ат при одновременном снижении пластичности, может протекать по различным механизмам, однако, по сути, оно представляет собой процесс формирования новых механических свойств под действием внешних нагрузок. Таким образом, с современных позиций механические свойства опреде.ля-ются динамической структурой, возникаюшей в металле при нагружении [47]. [c.34]

    При термообработке нефтяных остатков образуется анизотропная фаза, получившая название мезофазы, которая по своим оптическим и физическим свойствам напоминает нематические хщкие кристаллы С I 3. В настоящее время сложились определенные представления о структурной организации жидкокристаллических сфер мезофазы - это упакованные определенным образом плоские дископодобные молекулы С 2 Д. Проведены многочисленные исследования, направленные на выявление зависимости характера протекания мезофазных превращений от различных факторов-тешературы, давления, химического состава сырья [3,4 Л. Но, несмотря на общепризнанность факта формирования структуры кокса на стадии мезофазных превращений, в литературе не показано, как влияет динамика изменения сфер мезофазы на структуру получаемого продукта карбонизации. [c.47]

    Приведенные экспериментальные данные и результаты теоретических оценок касались ПЭВП, который является наиболее гибким и поэтому легче всего поддается ориентации по сравнению с другими полимерами. Однако аналогичные эффекты, как этого и следовало ожидать, наблюдались и для остальных полимеров. Для понимания причин, вызывающих изменение свойств, достигаемое регулируемым формированием структур, необходим детальный анализ деформационных и температурных воздействий, которым подвергается полимер в процессе переработки. Такой анализ стал проводиться лишь сравнительно недавно, хотя в течение последних 30 лет исследовалась роль надмолекулярных структур, морфологии и порядка в кристаллических и аморфных полимерах в равновесных условиях. Понимание характера равновесной морфологии позволяет правильно оценить потенциальные возможности, которые дает регулирование структур. [c.47]

    В работе использовались масла МП-1 и МП-100. Масло МП-1 применяется в настоящее время в качестве растворителя связующего офсетных печатных красок и красок для высокой печати. Оно представляет собой экстракт циклических углеводородов, содержащих в основном одно ароматическое кольцо в среднестатистической молекуле. По данным структурно-группового анализа, выполненного по методу С-Ь, примерно половина (56,3%) углерода среднестатистической молекулы масла находится в боковых цепях ароматических колец. Циклическая часть молекул содержит 0,5 нафтенового кольца. Таким образом, условно, масло представляет собой длинноцепочные алкилнроизводные тетралина. Масло МП-100 характеризуется высоким содержанием нафтеновых колец в средней углеводородной молекуле, оно содержит углерода в парафиновых структурах вдвое меньше, чем масло МП-1. По содержанию углерода в ароматических структурах образцы масел не отличались друг от друга, что позволяет выявить роль нафтеновых колец в формировании структур ВМС нефти в растворах и их влияние на реологические и печатно-технологические свойства красок. Физико-химическая характеристика образцов масел представлена в табл. 9.2. [c.253]

    Общеизвестна роль связующего в качестве вещества, адгезионно скрепляющего частицы углеродных цорошков. Толщина прослойки и пористая структура образующегося кокса, а также характер усадочных изменений при спекании и графитации оказывают значительное влияние на формирование структуры и свойств углеграфитовых материалов. Все это определяется химическими и физико-химическими параметрами связующего. Например, выход кокса находится в тесной связи со степенью ароматизации связующего. Очевидно, что условия взаимодействия порошков и связующего не имеют аналогии с эффектом нацолнения полимеров, несмотря на кажущееся сходство. В последнем случае наполнители предназначены для изменения в заданном направлении свойств полимера, являющегося основой материала. В углеграфитовых же композициях основная роль в формировании структуры и свойств принадлежит порошковым компонентам, которые, естественно, нельзя назвать наполнителями. [c.121]

    Гладкова Л. Г. Формирование структуры и свойства углеродных и металлоуглеродных материалов на основе полиимидов. Дисс. на соискание ученой степени канд. техн. наук. М 1986, 154 с. В надз. Институт элементоорганических соединений РАН. [c.697]

    ММВ с образованием ассоциатов и комплексов имеют большое значение в формировании структуры и свойств нефтяных систем. Эта проблема подробно рассмотрена в работах [5.34,51,53]. Характерно, что некоторые исследователи [139] преувеличивают роль ван-дер-ваальсовых и недооценивают значение слабых химических взаимодействий в образовании ас-соцнатов и комплексов в нефтяных системах, хотя энергия ММВ компонентов в них значительно превышает энергию обычных ван-дер-ваальсовых взаимодействий даже при температурах, далеких от точки затвердевания [140]. [c.65]

    Свободнодисперсные системы (СДС) относятся к наиболее изученным объектам коллоидной химии. Научные основы фнзикохимии СДС и связанных с ними поверхностных явлений изложены в классических и современных курсах коллоидной химии [171...174] и других фундаментальных работах [175,176]. Однако развитие науки и техники требует формирования научных основ прикладных ответвлений коллоидной химии, от чего в значительной мере зависит решение проблем интенсификации промышленности и создания новых материалов. Хотя нефтяные системы давно изучаются коллоидной химией, комплексный и целенаправленный характер в аспекте формирования коллоидной химии и физико-химической механики нефти и нефтепродуктов эти исследования приобрели сравнительно недавно [34,51,177,178]. На данном этапе развития коллоидной химии НДС важно не только теоретическое и экспериментальное исследование основных ее проблем, но и анализ и обобщение результатов исследований состава, структуры, свойств и технологии получения нефтяных систем, выполненных с использованием методов химии и химической технологии переработки нефти и газа, с позиций коллоидной химии и физико-химической механики дисперсных систем. Это способствовало бы развитию коллоидной химии нефти и нефтепродуктов и получению новой научной информации при меньших материальных и духовных затратах. [c.85]


Смотреть страницы где упоминается термин Формирование структуры и свойств УВ из ПАН: [c.236]    [c.260]    [c.261]    [c.82]    [c.46]    [c.125]    [c.489]   
Смотреть главы в:

Углерод, межслоевые соединения и композиты на его основе -> Формирование структуры и свойств УВ из ПАН




ПОИСК





Смотрите так же термины и статьи:

Формирование



© 2024 chem21.info Реклама на сайте