Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каустическая сода очистка

    Когда к чистоте деталей предъявляются повышенные требования, целесообразна ультразвуковая обработка, которую проводят в эмульсиях (дизельное топливо с водой и небольшим количеством поверхностно-активного вещества), щелочных растворах, (например, МС-8), органических растворителях (уайт-спирит, дизельное топливо) и др. Эффективны составы на основе жидкого стекла, тринатрийфосфата, каустической соды. Очистку ведут при Температуре раствора 50...80 °С, продолжительность 10 мин. При прохождении ультразвуковой волны в толще моющей среды образуется множество кавитационных пузырьков, которые разрушают жировые пленки и другие загрязнения. [c.291]


    На стадии дистилляции сероуглерод-сырец очищается от содержащихся в нем примесей (серы, сероводорода и др.). Эта стадия — одна из наиболее опасных. Схема дистилляционной установки показана на рис. 19. Сероуглерод-сырец из склада поступает в дестиллятор 10, оборудованный змеевиками для подогрева. Образующийся при нагреве до 46,5—47 °С парообразный сероуглерод направляется в холодильники 2, 3, в которых, охлаждаясь, переходит в жидкое состояние, и через фильтр 4, где очищается от серы, направляется в сепаратор 5. Для окончательной очистки сероуглерод подвергают химической обработке в щелочных колоннах 7, 8, заполненных кольцами Рашига и раствором каустической соды. [c.94]

    Натр едкий (К аОН) имеется в цехах в твердом виде и в виде 2—3°/о-ных водных растворов. Применяется для очистки газа от СО2 и НгЗ. Растворы едкого натра (каустической соды) вызывают химичеокие ожоги кожи. Действие раствора тем сильнее, чем выше его концентрация и температура. При попадании щелочи на кожу следует обмыть пораженный участок большим количеством воды под напором. Особенно опасно попадание едкого натра В глаза. При попадании щелочи в глаза необходимо промыть их струей чистой воды, затем 2— 2,5°/о-ным раствором борной кислоты, снова водой, закапать касторовое масло и обратиться в медпункт. ПДК щелочных аэрозолей в пересчете на едкий натр — 0,5 мг/м1 [c.23]

    Паста, удаляемая с последнего фильтра, содержит не более 6"о кислоты, около 1,5 о фенола и до 40"о влаги. Остатки кислоты удаляют нейтрализацией на стадии перекристаллизации дифенилолпропана-сырца. Их можно полностью отмыть водой, но при этом значительно возрастает количество сточных вод, подлежащих очистке. Промытую пасту дифенилолпропана с последнего фильтра ленточным транспортером подают в эмалированный аппарат 6 с якорной мешалкой, рубашкой для обогрева паром и обратным холодильником. Предварительно в этот аппарат загружают 0,5—3%-ный раствор кальцинированной или каустической соды. [c.117]

    Сырые нефти обычно содержат большой процент асфальтенов (нефти асфальтового основания), от которых невозможно избавиться простой перегонкой, и нафтеновых кислот, которые удаляются при перегонке в присутствии каустической соды. Масляные фракции выделяются перегонкой, но зачастую они настолько широки, что возникает потребность во вторичной ректификации. Очистка с применением селективных растворителей заменила очистку с применением серной кислоты и каустической соды. [c.495]


    Недоброкачественное покрытие удаляют в растворе каустической соды под напряжением (очистка). Шлифованием на концах штока длиной около 500 мм снимают остатки дендритных включений или удаляют конусность. Очистку и шлифование проводят в тех случаях, когда в процессе покрытия выявляются эти дефекты. [c.166]

    Сплавы на основе никеля. Использование сплавов на основе никеля в условиях сильного воздействия коррозии рассматривалось выше. Сплав монель с содержанием N1 — 30 Си используется в ряде установок, таких, как охладители соленой воды, в частности морской, и нагреватели испарителей питательной воды, в которых вода циркулирует в трубном пространстве, а также в теплообменниках, в которых происходит коррозионное растрескивание и другие виды коррозии, вызванные воздействием хлоридов. Монель обладает значительной стойкостью к коррозии, вызванной фтористыми соединениями, и может использоваться, например, в ребойлерах и конденсаторах при алкилировании с применением фтористого водорода НР в качестве катализатора [12]. Однако на современных заводах, где применяются меры по очистке воды, для изготовления теплообменного оборудования находит широкое применение углеродистая сталь [13]. Монель может также использоваться в уставовках с горячей каустической содой и горячим раствором карбоната калия. [c.316]

    Очистку от двуокиси углерода газа, полученного конверсией углеводородов и окиси углерода, можно проводить путем отмывки не только растворами этанолами-нов, но и водой [44] под давлением, каустической содой или мышьяковисто-содовым раствором [47, 52]. Приме- [c.27]

    Для выбора рациональной технологии очистки газа от сероводорода нами испытано несколько методов с использованием в качестве поглотителей сероводорода девонской воды, водных растворов аммиака, каустической соды, моноэтаноламина, хлорного железа, окиси железа, гидрата окиси железа. [c.27]

    Согласно Комплексной программе химизации предусмотрено применение в основных технологических процессах катализаторов нового поколения с повышенной активностью, селективностью, надежностью и сроком службы. Широкое использование в различных отраслях народного хозяйства найдут мембранные процессы при разделении жидких и газовых смесей, производстве особо чистых веществ, фотоматериалов, хлора, каустической соды, химических добавок, очистке сточных вод и извлечения из них ценных компонентов. [c.184]

    В самом начале текущего века наиболее распространен был, очевидно, способ очистки растворителей путем их промывки щелочью. Применяли различные щелочи, но наиболее употребительным был 8—10% раствор едкого натра (каустической соды). Растворитель перемешивали с щелочным раствором, после чего ему давали возможность отстояться. В некоторых предприятиях растворитель непрерывно пропускали через раствор щелочи. [c.9]

    Кальцинированная С.— один из важнейших продуктов химической промышленности, использующийся почти во всех отраслях народного хозяйства для производства стекла, алюминия, мыла, моющих средств, различных солей и красок, для десульфурации чугуна, очистки нефти, мойки шерсти, стирки белья, производства гидрокарбоната натрия, каустической соды и др. Гидрокарбонат натрия (питьевая С.) получают взаимодействием кальцинированной С. и Oj под давлени- [c.231]

    Едкий натр иначе называется каустической содой. Он находит применение в самых различных производствах мыловарение, получение органических красок, бумажное производство, текстильная промышленность, производство искусственного шелка, очистка жиров и масел и др. [c.242]

    Очистка щелочно-спиртовым (метаноловым) раствором бензина прямой перегонки из высокосернистой нефти требует соблюдения следующих условий работы расход смешанного реагента 20% (объемн.) к бензину состав реагента 20%-ный раствор метанола 1 часть, каустическая сода 2 части продолжительность контакта между реагентами и нефтепродуктом 5 мии. При таком способе очистки содержание общей серы в бензиновом дестиллате снижается, например, с 0,58 до 0,30%, содержание меркаптанов — с 0,26% до 0,008% (вес.). [c.319]

    Едкий натр получается в очень больших количествах и является одним из важных продуктов основной химической промышленности. Он применяется для очистки нефтяных Продуктов — бензина и керосина, для производства мыла, искусственного шелка, бумаги, применяется в текстильной, кожевенной, химической промышленности, а также в быту ( каустик , каустическая сода ). [c.296]

    Известны различные технологические схемы процесса получения хлора и соды каустической в электролизерах с ртутным катодом, которые отличаются методом донасыщения вытекающего из электролизера раствора хлорида натрия, очисткой водорода и раствора каустической соды от ртути и другими технологическими стадиями. В зависимости от технологической схемы находятся технико-экономические показатели процесса, в том числе такой важный показатель, как потери ртути. [c.89]


    Перед сваркой емкостей, в которых находились легковоспламеняющиеся жидкости, газы и т. д., должно быть тщательно проведено их вентилирование, очистка, промывка горячей водой и каустической содой, пропарка, просушка и вторичное проветривание с последующим лабораторным анализом воздушной среды. [c.368]

    Битумы из кислого гудрона получают в значительно меньших количествах, чем другие. Кислый гудрон образуется в результате сернокислотной очистки различных нефтяных дистиллятов. Некоторые битумы получают при перегонке нефтей, содержащих значительное количество нафтеновых кислот, в присутствии каустической соды. [c.262]

    Для очистки от сероводорода Но пропускают через очистители, содержащие влажный оксид железа или известь (одновременно удаляют диоксид углерода). Для поглощения диоксида углерода применяют такнсе раствор каустической соды. Очистку от оксида углерода производят различным11 методами, например пропусканием водорода через растворы так называемо медноаммиачной соли, которыми оксид углерода поглощается. [c.623]

    В производстве хлора и каустической соды очистка рассола является одной из важных технологических стадий. К качеству -очищенного рассола предъявляются самые высокие требования, особевпо для метода электролиза с ионно-обменными мембранами. [c.175]

    Технологическая схема производства хлора, каустической соды и водорода электролизом с ионообменной мембраной представлена на рис. 2.46. Производство состоит из трех отделений—приготовления и очистки рассола, электролиза, выпарки каустической соды. Очистка рассола — двухстадийная. На первой стадии в бак 1 подают твердую соль, воду и обратный рассол, вытекающий из анодного пространства и обедненный по содержанию хлорида. В баке 1 рассол очищается от ионов кальция и магния по схеме, принятой для очистки рассола в производстве хлора, каустической соды и водорода по методу электролиза с фильтрующей диафрагмой. Дополнительную очистку рассола ведут в аппарате 2, заполненном катионообменной смолой, сорбирующей катионы кальция и магния. Очищенный рассол поступает в бак 3, который входит в систему циркуляции через анодное пространство электролизера 4. Обедненный хлоридом рассол из анодного пространства электролизера снова отводится в бак 3, а хлор поступает потребителю. Циркуляция католита осуществляется через сборник 5, куда из катодного пространства электролизера поступает 21%-ный раствор каустической соды. Тепло католита утилизируется в теплообменнике выпарной установки 6, откуда католит поступает в выпарной аппарат 7. Выпаривание ведут в основных выпар- [c.176]

    VIII — формальдегид с установки для очистки химикатов IX — каустическая сода для [c.89]

    Как известно, наибольший расход каустической соды приходится на очистку сырья для процесса алкилирования (бутан-бутиленовой и пропан-пропиленовой фракций), где щёлочь расходуется на удаление меркаптановых соединений. В среднем для очистки одной тонны бутан-бутиленовой фракции расходуется 1,06 кг щёлочи. Однако и это не обеспечивает полного удаления сернистых соединений. Обычно после очистки остаётся до 0,0155 % мае. меркаптановой серы. Эти меркаптаны обуславливают повышенный расход серной кислоты в процессе алкилирования. При использовании процесса демеркаптанизации для очистки бутан-бутиленовой фракции за счёт регенерации расход щёлочи снижается до 0,06 кг/т сырья, а содержание меркаптанов уменьшается до 0,0005 % мае. Это даст следующую годовую экономию реагентов для типовой алкилирующей установки производительностью 82 тыс. т/год  [c.41]

    Основные источники потери ртути — сточная вода после процессов очистки, охлаждения водорода и др. осадки при регенерации рассола, фильтрации и очистке каустической соды. Для того чтобы уменьшить содержание ртути и хлора в отходах, могут быть предприняты следующие меры удаление ртути из сточных вод методами осаждения, флоикуляции, фильтрации обезвоживание и устранение рассольных шламов фильтрация каустической соды рециркуляция твердых и жидких отходов абсорбция газов нейтрализация выбросов и деструкция остаточного хлора. [c.253]

    Для очистки высокодисперсных эмульсий Н/В (например, конден-йатных) применяют всевозможные фильтры, заполненные смачиваемыми водой (гидрофильными) веществами, например карбонатом кальция. Вода проходит через гидрофильную массу фильтра, а нефть задерживается на ней. Существуют способы фильтрования эмульсии Н/В через активный уголь, на котором задерживается нефть, с последующей регенерацией фильтра легко испаряющимся растворителем. Примерно 1 кг активного угля задерживает из конденсатной эмульсии 150 г масла. Часто для удаления нефти или нефтепродуктов применяют метод флотации. К эмульсии Н/В добавляют реагенты, образующие студенистые хлопья, адсорбирующие на своей поверхности нефть. Капельки нефти заряжены отрицательно, поэтому добавка электролитов способствует их коалесценции. Для этого обычно применяют технический сульфат алюминия вместе с карбонатом натрия или каустической содой. [c.37]

    Химическая очистка емкостей и трубопроводов из углеродистой стали включает в себя 1) очистку и обезжиривание прокачиванием 8—10-процентного раствора каустической соды при температуре около 65° С 2) промывку чистой водой 3) очистку от песка, ржавчины и окалины прокачиванием 10-процентного раствора соляной кислоты с добавкой 0,25— 0,50% бифтористого аммиака раствор, нагретый не менее чем на 65° С, должен циркулировать в трубопроводе 4 ч или более в зависимости от его состояния 4) просушку трубопровода сухим азотом 5) промывку его чистой водой до получения нейтрального значения показателя концентрации водородных ионов pH 6) нейтрализацию трубопровода 0,25-процентным раствором лимонной кислоты. Операция нейтрализации может быть заменена просушкой трубопровода горячим воздухом, наполнением его смазочным маслом и последующей продувкой горячим воздухом. [c.527]

    Упаренный щелочной раствор содержит 2,5—3,0% хлористого натрия. Такое содержание Na l недопустимо для некоторых потребителей (например, в производстве искусственного волокна), поэтому каустическую соду подвергают дополнительной очистке. Существует несколько способов очистки. [c.175]

    Металлический натрий применяется в качестве катализатора процесса полимеризации бутадиена в каучук, для изго-товления сплавов, синтеза красителей, фармацевтических препаратов и др. Металлический калий используется лишь для получения сплавов. Со ртутью калий и натрий образуют амальгамы — твердые сплавы, используемые в качестве восстановителя вместо чистых металлов. Широкое применение находят соедине1у1Я калия и натрия. Наибольшую ценность представляют их гидроксиды, которые получаются при электролизе водных растворов хлоридов (гл. V, И). Едкий натр (каустическая сода) в больших количествах используется для очистки нефтепродуктов, в мыловаренной, бумажной, текстильной промышленности (для производства искусственного волокна) и в других производствах. Солн калия служат хорошими удобрениями (см. гл. X, 4). [c.264]

    Примером относящихся сюда процессов является очистка бензина раствором каустической соды и метанола. Бензин, предварительно промытый разбавленным раствором NaOH, пропускается через очистную насадочную колонну противотоком к стекающему вниз концентрированному раствору NaOH, вводимому в верху колонны. В среднюю часть колонны вводится [c.318]

    Гидроксид натрия получают в очень больших количествах. Он является одним нз важных продуктов основной химической промышленности. Применяют его для очистки нефтяных продуктов — бензина н керосина, для производства мыла, искусственного шелка, бумаги, в текстильной, кожевенной, химической пpo ышлeннo ти, а также в быту (каустик, каустическая сода). [c.241]

    Перед сваркой емкостей (отсеки судов, цистерны, баки и т. д.), в которых находилось жидкое топливо, легковоспламеняющиеся жидкости, газы и т. д. должна быть проведена тщательная их очистка, промывка горячей водой с каустической содой, пропарка, просушка и вентплирование с последующим лабораторным анализом воздушной среды. Сварка должна производиться обязательно при открытых лазах, люках, пробках и т. п. [c.310]

    Технологическая схема процесса получения хлора, каустической соды и водорода (рис. 2.32) состоит из отделений растворения соли и очистки рассола, эле.стролиза, выпарки электролитического щелока, сущки хлора и водорода. [c.158]

    Внесенный раствор каустической соды вьщерживался н пласте в течение 1-3 ч. Затем открывали затрубное пространст во и производили очистку призабойной зоны пласта пеной. [c.220]

    Сообщения об устойчивости сепиолита при высоких температурах побудили Карни и Мейера исследовать его применение в буровых растворах для бурения геотермальных скважин. При нагреве раствора сепиолита в пресной воде (70 кг/м ) при температурах до 400 °С отмечали лишь умеренное повышение консистенции раствора. Для снижения скорости фильтрации в раствор вводили небольшие количества вайомингского бентонита и определенных полимеров (о составе которых не сообщается). При бурении геотермальных скважин на территории шт. Калифорния использовали буровые растворы, состоящие из воды, сепиолита, модифицированного лигнита, натрийполиакрилата и каустической соды. Диспергирование сепиолита производилось с помощью устройства, обеспечивавшего высокие сдвиговые усилия. В процессе бурения нефтяных скважин сепиолит используется вместо аттапульгита в буровых растворах на минерализованной воде вместо асбеста в композициях пробок для очистки ствола скважины в системах, содержащих бентонит и окисленный битум, и в надпакерной жидкости. [c.461]

    На ряде предприятий в отделении сульфирования (супьфагирова-ния) из триоксида серы получают серную кислоту и период пуска и остановки отделения сульфирования газовая смесь SO5 - воздух -направляют на узел улавливания серной кислотой. Этот узел состоит нз улавливающего скруббера и системы циркуляции растворов серной кислоты 98%-й концентрации. Газ, содержащий SO3, проходит через Колонну с насадкой. Концентрация серной кислоты автоматически поддерживается на уровне 98%. Свежая вода для разбавления кислоты подается в циркуляционный насос. Газ иэ скруббера направляется на дальнейшую очистку в электрофильтр, где по аналогии вышеприведенного электроосадителя проводится очистка на электродах с орошением раствором каустической соды. [c.177]

    В процессе электролитического производства хлора и каустической соды выделяется водород. При диафрагменном методе 1фОизводства водород может содержать примеси кис.порода азота, а также хлорорга)1ических продуктов, образующихся в анодном пространстве. После соответствующей очистки водород, может выть использован в некоторых процессах гидрирования. [c.404]

    Гехнплогичсская схема включает процессы получения рассола и его подготовки к электролизу (очистка), сам процесс электролиза (ооювная стадия), выпарку и плавку каустической соды и перничнуто переработку хлора и нодорода — охлаждение, осушку и комкримирование (рис. XII-1). [c.404]

    Натрия гидроокись (едкий натр, каустическая сода) ЫаОН. Применяется для удаления сероводорода и низших меркаптанов из сжиженных газов, бензиновых и керосиновых дистиллятов, для под-щелачивания нефти, удаления из нефтепродуктов следов серной кислоты и кислых продуктов реакции после сернокислотной oчи ткиJ очистки инертного газа от СО2, в производстве алкилфенольных присадок, натриевых и кальциево-натриевых смазок. [c.311]

    Таким образом, при наличии в газе разнообразных сернистых соединений наобходима двухступенчатая — холодная и горячая очистка. Процесс щелочной очистки при условии правильного выбора аппаратуры является экономичным. Однако при концентрации СОа в газе выше 0,1—0,3% чрезмерно возрастает расход щелочи. При больших концентрациях СОа и НаЗ в природном газе применяется двухступенчатая схема очистки первая ступень — моноэтаполами-новая, вторая — щелочная очистка от меркаптана [12]. В этом случае расход каустической соды не превышает 0,16 кг на 1000 м природного газа. [c.337]

    Следовательно, очистка с дшогократным использованием едкого натра представляется несколько более дорогой, чем при однократном защелачивании свежим каустиком. Ориентировочные экономические расчеты с учетом всех других возможных эксплуатационных расходов определяют это удорожание равным примерно 7 коп. на 1 та дистиллята. Однако имеются основания предполагать, что в промышленных условиях удорожания пе произойдет. Приведенные показатели расхода электроэнергии являются явпо завышенными вследствие уже отмеченных выше потерь раствора, неизбежных при проведении лабораторных экспериментов. Между тем промышленная установка может быть оборудована электрическими отстойниками, практически полностью предотвращающими потери реагента вследствие уноса с очищенным продуктом. Вначале можно собирать и возвращать в систему очистки реагенты, отстаивающиеся в товарных, емкостях. Это позволит одновременно увеличить экономию каустической соды и сделать целесообразной утилизацию серы. [c.157]


Смотреть страницы где упоминается термин Каустическая сода очистка: [c.176]    [c.212]    [c.239]    [c.301]    [c.404]    [c.318]    [c.412]    [c.272]    [c.176]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.14 , c.264 ]

Производство водорода кислорода хлора и щелочей (1981) -- [ c.55 , c.155 , c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Каустическая сода

Сода сода



© 2025 chem21.info Реклама на сайте