Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой и электрокинетические явления

    Описание электрокинетических явлений включает подробные характеристики строения двойного электрического слоя. [c.5]

    Как показали дальнейшие исследования, электрокинетические явления тесно связаны со свойствами поверхности и структурой двойного электрического слоя на межфазной границе. Вследствие той важной роли, которую они играют в коллоидных системах, их рассмотрению посвящена отдельная глава. В этой главе будут изложены и основные представления в области электрохимии двойного слоя, возникшие в большой степени в результате исследования электрокинетических явлений. [c.134]


    Во всех выражениях для скорости электрокинетических явлений или для потенциалов перемещения величины е и 8 или е и характеризующие двойной электрический слой в элементарной теории электрокинетических явлений, сопряжены попарно. По этой причине Гуггенгейм в 1940 г. предложил использовать их не в отдельности, а в виде произведения е8 или е /4я, характеризующего момент двойного слоя, и в честь автора теории электрокинетических явлений назвать единицу измерения этого момента гельмгольц . [c.143]

    Это также противоречит представлению о молекулярном двойном электрическом слое как источнике электрокинетических явлений. [c.148]

    Потенциал можно измерить, наблюдая электрокинетические явления. Существование двойного электрического слоя и связанного с ним скачка потенциала на границе раздела фаз позволяет понять природу этих явлений. [c.167]

    Согласно современной теории двойного электрического слоя получили объяснение электрокинетические и электрокапиллярные явления, а также проблемы строения и устойчивости коллоидных частиц лиофобных золей. Согласно этой теории при относительном движении жидкой и твердой фаз плоскость скольжения их лежит на некотором расстоянии от твердой фазы (рис. 94, а, линия тп). [c.315]

    Приведенная схема строения двойного электрического слоя не объясняет ряд особенностей электрокинетических явлений. В настоящее время она представляет для коллоидной химии только исторический интерес. Основным недостатком этой схемы является [c.175]

    Если бы теория Гельмгольца — Перрена была правильной, то при оседании коллоидных частиц в жидкости или при продавливании жидкости через капилляр вообще не должен был бы наблюдаться эффект Дорна или потенциал протекания, а явления злек-тро оре а и электроосмоса были бы невозможны. Однако если даже допустить, как это принималось ранее, что поверхность скольжения проходит между двумя обкладками двойного электрического слоя, то и в этом случае представления Гельмгольца — Перрена приводят к противоречию. В самом деле, при таком допущении электрокинетический потенциал, т. е. потенциал, обнаруживаемый при электрофорезе или электроосмосе, должен был бы соответствовать разности между всеми потенциалопределяющими ионами и [c.176]

    Течение жидкости в двойном электрическом слое при электрокинетических явлениях происходит ламинарно и выражается обычными гидродинамическими уравнениями. [c.198]

Рис. VII, 19. Поведение двойного электрического слоя при электрокинетических явлениях а —схема двойного слоя по Гельмгольцу— Перрену б—схема двойного слоя с учетом диффузного слоя Гуи и адсорбционного слоя Штерна. Рис. VII, 19. Поведение <a href="/info/8712">двойного электрического слоя</a> при <a href="/info/9081">электрокинетических явлениях</a> а —<a href="/info/72524">схема двойного</a> слоя по Гельмгольцу— Перрену б—<a href="/info/72524">схема двойного</a> слоя с <a href="/info/646674">учетом диффузного</a> слоя Гуи и <a href="/info/6437">адсорбционного слоя</a> Штерна.

    Если по оптическим и молекулярно-кинетическим свойствам суспензии и золи с твердой дисперсной фазой резко различны, то по агрегативной устойчивости они имеют много общего. Как правило, частицы суспензий, равно как и частицы лиофобных коллоидов, имеют на поверхности двойной электрический слой или сольватную оболочку. Электрокинетический потенциал частиц суспензий можно определить с помощью макро- или микроэлектрофореза, причем он имеет величину того же порядка, что и -потен-циал частиц типичных золей. Под влиянием электролитов суспензии коагулируют, т. е. их частицы слипаются, образуя агрегаты, В определенных условиях в суспензиях, так же как и в золях, образуются пространственные коагуляционные структуры, способные к синерезису. Явления тиксотропии и реопексии при соблюдении соответствующих условий проявляются у суспензий почти всегда в большей степени, чем у лиофобных коллоидных систем. [c.367]

    ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ И ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ [c.174]

    Учебное пособие составлено на основе лекций, читаемых студентам старших курсов химического факультета ЛГУ, специализирующимся по коллоидной химии. Пособие включает в себя не только изложение собственно электрокинетических явлений, но также и описание электрокинетических свойств капиллярных систем, связанных с наличием двойного электрического слоя на границе раздела твердое тело—жидкость. В книге приводятся многочисленные примеры использования рассматриваемых явлений в смежных областях науки и их практического применения в различных отраслях промышленности. [c.2]

    Целью данного специального курса является дополнение к. лекционному материалу по общему курсу коллоидной химии. Некоторые вопросы, которые не могли быть достаточно полно освещены в общем курсе за недостатком времени, излагаются более подробно. В то же время ряд вопросов, детально обсуждавшихся, будет опущен. Курс лекций включает в себя не только изложение собственно электрокинетических явлений, но также и электрокинетических свойств капиллярных систем, связанных с наличием двойного электрического слоя на границе раздела фаз. В курсе приводятся многочисленные примеры использования рассматриваемых явлений в смежных областях науки и их практического применения в различных отраслях промышленности. [c.3]

    Современные представления о механизме электрокинетических явлений основываются на идее о существовании двойного электрического слоя на границе раздела фаз. Отсюда следует важность получения более полных и детальных сведений о природе и свойствах двойного слоя. Вопросы происхождения и строения двойного электрического слоя довольно подробно рас-..сматриваются в общем курсе коллоидной химии, поэтому в данном пособии мы остановимся кратко на некоторых основных вопросах и на важнейших дополнениях, выходящих за пределы общего курса. [c.14]

    К электрокинетическим явлениям относят эффекты, связанные либо с относительным движением двух фаз под действием постоянного электрического поля, либо с возникновением разности потенциалов при относительном смещении двух фаз, на границе между которыми существует двойной электрический слой. [c.404]

    Все электрокинетические явления основаны на наличии двойного электрического слоя на границе твердой и жидкой фаз. Из описанных явлений электрофорез имеет наиболее широкое практическое приме- [c.405]

    Движение фаз под действием внешней разности потенциалов или, наоборот, возникновение разности потенциалов при вынужденном относительном перемещении фаз объясняются существованием двойного электрического слоя. По данным, получаемым при изучении электрокинетических явлений, определяют скачок потенциала между точками вблизи поверхности и в объеме жидкости. Его называют электрокинетическим или -потенциалом. На величину, а в некоторых случаях на знак -потенциала влияют содержащиеся в среде электролиты. Следовательно, элект- [c.86]

    Значительную роль сыграли исследования электрокинетических явлений в построении современной теории скачка потенциала на границе фаз. Опыты с частицами угля и платины позволили выяснить, в какой мере электролитические явления коллоидных систем связаны с величиной общего скачка потенциала на границе фаз. Так, например, старые представления Нернста, Гельмгольца и других не могли дать ответа на вопрос о том, почему при возникновении двойного электрического слоя на границе фаз, кроме термодинамического потенциала <р, появляется электрокинетический потенциал Более точное количественное изучение коллоидных систем и строения двойного слоя позволило не только обнаружить, но и вычислить величину -потенциала. [c.232]

    Изменение молекулярных сил притяжения и электростатических сил отталкивания с расстоянием происходит различным образом. Поэтому на потенциальной кривой взаимодействия двух частиц имеется энергетический барьер, который и определяет вероятность необратимого слипания частиц. Высота энергетического барьера, как и вид суммарной кривой взаимодействия двух частиц, зависит, прежде всего, от свойств двойного электрического слоя. Чем толще двойной электрический слой, тем интенсивнее результирующее отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Таким образом, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя, которые могут быть определены нри изучении электрокинетических явлений, в частности электрофореза. [c.97]


    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда — основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризационные явления, происходящие при этом, и, наконец, явления, связанные с электростатическим взаимодействием коллоидных частиц, определяющим в значительной степени устойчивость дисперсной системы. Все эти феномены взаимосвязанные посредством ДЭС, на- [c.178]

    Основу книги составляет лекционный курс коллоидной химии для студентов химического факультета Санкт-Петербургского государственного университета, соответствующий утвержденной программе. Поэтому в курсе представлены разделы, наиболее существенные для коллоидно-химического восприятия мира. Такими основными разделами автор считает поверхностные явления и адсорбцию, двойной электрический слой и электрокинетические явления, устойчивость дисперсных систем, структурообразование, поверхностно-активные вещества. [c.6]

    ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ПРИРОДЕ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ И ЭЛЕКТРОКИНЕТИЧЕСКИХ ЯВЛЕНИЙ [c.173]

    Полученное таким образом соотношение, называемое уравнением Гельмгольца—Смолуховского, связывает скорость относительного смещения фаз под действием внешнего поля с некоторой разностью потенциалов в двойном электрическом слое Аф. Для понимания природы этой величины и влияния на нее характера фаз перейдем к более полному рассмотрению условий образования и строения двойных электрических слоев на границах раздела дисперсной фазы и дисперсионной среды. Заметим, однако, что излагаемая далее принципиальная схема строения двойного слоя не может полностью количественно описать всю совокупность различных процессов на поверхностях раздела фаз. Ряд важных деталей теории строения двойных электрических слоев подробно рассматривается в курсах электрохимии. Ниже приводятся те основные сведения, которые необходимы для анализа электрокинетических явлений и устойчивости дисперсных систем. [c.176]

    Само существование электрокинетических явлений указывает на то, что в месте контакта твердого тела и жидкости имеется двойной электрический слой, причем и твердое тело, и жидкость обладают определенными зарядами. Движение взвешенных твердых частиц внутри жидкости, наблюдаемое при наложении электрического поля (явление электрофореза), может совершаться лишь в том случае, если твердые частицы, распределенные в жидкости, обладают зарядом. Точно так же электроосмотическое перемещение жидкости было бы невозможным при отсутствии у нее заряда, на который влияет электрическое поле. 1 азность потенциалов между точками на различных высотах трубы, в которой происходит процесс осаждения взвешенных в жидкости твердых частиц, не могла бы возникать, если бы падающие твердые частицы не несли с собой электрического заряда. Наконец, нельзя объяснить появление потенциала течения, не предположив, что жидкость обладает некоторым зарядом. [c.231]

    При изучении электрокинетических и электрокапиллярных явлений были установлены определениьк опытные закономерности. Корректная теория строения двойного электрического слоя металл — электролит должна давать нх истолкование. Эти же факты служат критерием сираведливости тех 1ли иных вариантов теории двойного электрического слоя. [c.260]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    В коллоидных системах и капиллярно-пористых телах в электрических полях наблюдаются такие процессы, как электрофорез, электроосмос, электродиализ, электрокоагуляция, ионофорез и др. [И]. Указанные процессы относятся к группе так называемых электроповерхност-ных, т.е. относящихся к коллоидной и физической химии (двойной слой, электрокинетические явления, электроповерхностные силы). В последние годы эти вопросы были существенно развиты в работах Б.В. Дерягина, Н.В. Чураева, С.С. Духина и других исследователей [11,12]. [c.79]

    Электрические методы довольно широко применяют для получения данных о строении двойного электрического слоя и о наличии граничной фазы на основе исследования электроповерх-ностных аномальных свойств жидкостей (электропроводность, диэлектрические потери и проницаемость, электрокинетические явления и т. п.). [c.75]

    В курсе коллоидной химии рассматривается общая теория двойного электрического слоя и электрических межфазных явлений, значение которых выходит далеко за рамки данной науки. Кроме ионообменной адсорбции, электрокинетических явлении, стабилизации и коагуляции дисперсных систем и других процессов, изучаемых в данном курсе, электрические межфазные явлеиия в значительной мере определяют электродные процессы (электрохимия), процессы массопереноса через межфазиую поверхность, каталитические, мембранные, биологические процессы, обусловливают свойства полупроводниковых и других материалов. [c.44]

    Определяемые с помоьцью электрокинетических явлений знак и зиачепие -потенциала ишроко используются для характеристики электрических свойств поверхностей при рассмотренпа адсорбции, адгезии, агрегативной устойчивости дисперсных систем, структу-рообразования в материалах и других важных процессов. В этом случае обычно потенциал диффузной части двойного электрического слоя ирпиимают приблизительно равным -потенциалу. [c.219]

    Для исследования строения двойного электрического слоя используются электрокинетические и электрокапил-лярные явления. [c.98]

    Таким образом, электрокинетические и электрокапилляр-нь(б явления, устанавливая изменение заряда поверхности электрода с изменением электродного потенциала при введении или в отсутствие специфически адсорбирующихся ионов либо молекул, дают определенные представления о строении двойного электрического слоя. [c.101]

    На основании изучения электрокинетических явлений в коллоидных системах было установлено, что у поверхности коллоидных частиц на границе разд,ела фаз образуется двойной электрический слой и возникает скачок потенциала. Это обусловлено тем, что ионы одного знака необменно адсорбируются на поверхности адсорбента, а иоиы противоположного знака в силу электростатического притяжения располагаются около нее. Причем величина и знак заряда поверхности зависят от природы твердых частиц адсорбента и от природы жидкости, с которой он соприкасается. [c.313]

    С современной точки зрения заряд на коллоидных частицах лиозолей, проявляющийся при электрофорезе, обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул веществ. Правильность такой точки зрения подтверждают опыты, показавшие, что эле строкине-тические явления не наблюдаются или почти не наблюдаются в жидких средах с очень малой диэлектрической проницаемостью, в которых не происходит заметной диссоциации электролитов. К таким жидкостям относятся хлороформ, петролейный эфир, сероуглерод. В то же время электрокинетические явления наблюдаются в нитробензоле в таких слабо полярных жидкостях, как ацетон, этиловый и метиловый спирты, и в особенности — в воде. [c.171]

    Влияние природы дисперсионной среды. Как отмечалось в начале этой главы, электрокинетические явления, а следовательно, и наличие двойного электрического слоя на межфазной границе характерны для систем с дэдд ньши дисперсионными средами. Большое число проведенных исследований показало, что -потен-циал дисперсной фазы тем больше, чем больше полярность растворителя. В табл. УИ, 1 приведены результаты определения ско- [c.196]

    Электрокинетические явления свидетельствуют о том, что на границе раздела фаз возникает двойной электрический слой, представляющий собой тонкий поверхностный слой из пространственно разделенных электрических зарядов противоположного знака. В дисперсных системах двойной э.лектрический слой образуют ионы и дипольные молекулы. Ионный двойной электрический слой возникает либо в результате диссоциации ионогенных групп вещества твердой фазы, либо вследствие избирательной адсорбции ионов, достраивающих кристаллическую решетку твердой фазы. В результате на границе межл твердой фазой и раствором возникает подобие конденсатора, вну-аренняя обкладка которого образована потенциалоопределяющими ионами, а наружная — противоионами. [c.306]

    Среди электрокинетических свойств капиллярных систем — мембран. и диафрагм существенную роль играет изменение чисел переноса ионов в порах мембраны по сравнению со свободным раствором. Рассмотрим сущность данного явления. Представим себе капилляр в продольном разрезе, наполненный раствором электролита с двойным электрическим слоем ионов на внутренней поверхности, при отрицательном заряде стенки (рис. 86). В объеме АБВГ, где ионы сохраняют подвижность при наложении электрического поля, концентрация катионов больше, чем [c.205]

    Из теоретических вопросов упомянем о концепции двойного электрического слоя и электрокинетическом потенциале. Идея двойного электрического слоя на границе двух фаз была выдвинута более 100 лет назад физиком Квинке для объяснения механизма открытого им потенциала протекания. Эта идея была широко использована в различных областях науки, в частности в физике (теории поля и электростатике), а также в электрохимии. Понятие об электрокинетическом потенциале было введено Фрейндлихом и Смолуховским в начале настояш его столетия и было также широко применено для освещения многих коллоидно-химических и электрохимических проблем, где ставился вопрос о природе и свойствах поверхностных слоев, разделяющих отдельные фазы, с учетом их взаимодействия. Электрокинетический потенциал играет большую роль, как известно, в вопросах устойчивости суспензоидных коллоидов, коагуляции, пептизации, в учении о структурах и структурообразовании, в явлениях [c.5]

    В семидесятых годах прошлого века Гельмгольц дает более точные и широкие физические обоснования механизма и математическую теорию электрокинетических явлений на основании количественных данных, полученных Видеманом и Квинке, и представлений о двойном электрическом слое. В 1878 г. Дорн открывает явление потенциала седиментации. Появляются интересные количественные данные по электроосмосу нашего соотечественника, профессора физики Политехнического института в Петербурге С. Я. Терешина. [c.12]

    Рассмотрим более подробно явление злектроосмоса, т. е. передвижение жидкости по отношению к твердому телу под действием приложенной извне разности потенциалов. Как известно, электроосмос был первым из открытых Рейссом электрокинетических эффектов и является одним из наиболее изученных как в теоретическом, так и в экспериментальном отношении. С помощью электроосмоса во многих случаях можно наиболее просто (с методической стороны) определить знак заряда и величину электрокинетического потенциала различных пористых тел, диафрагм, порошков, грунтов и пр. На основе первых количественных опытов, проведенных в середине прошлого века Квинке, Видеманом и др., и гипотезы Квинке о существовании двойного электрического слоя Гельмгольц в 70-х годах прошлого века создал общую теорию электрокинетических явлений и дал математическую обработку ряду закономерностей, установленных в результате эксперимента по электроосмосу. Основные закономерности, которые были установлены в экспериментах по злек-троосмосу, оказались следующими  [c.47]

    Строение двойного электрического слоя. Основываясь на экспериментальных данных, полученных Квинке при изучении электрокинетических явлений, Г. Гельмгольц предложил первую модель двойного электрического слоя. Согласно воззрениям Гельмгольца, в дальнейшем развитым М. Смолуховским и Ж. Перреном, двойной электрический слой рассматривается как заряженный плоский конденсатор. На поверхности находится слой ионов, называемых потенциалобразующими, а на некотором расстоянии от нее в жидкой фазе находятся, удерживаемые силой электростатического притяжения, ионы противоположного знака, называемые противоионами. Модель Квинке — Гельмгольца предполагает, что расстояние между плотным слоем противоионов и слоем потенциалопределяющих ионов повсюду одинаково. По условию электронейтральности удельные поверхностные заряды (поверхностные плотности зарядов) обенх составляюш,их частей двойного электрического слоя должны быть равны по абсолютной величине д+=д . Скачок потенциала для модели Квинке — Гельмгольца рассчитывается по известной формуле для плоского конденсатора 9=СД >1, в которой С—емкость плоского конденсатора на единицу площади, причем С = еео- - (еео — [c.87]

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда — основную роль не только в адсорбции понов и ионном обмене, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы, электрокапил-лярные и электрокинетические явления, процессы переноса вещества и энергии через коллоидные системы, поляризационные явления, происходящие при этом, и наконец, явления, связанные с электростатическим взаимодействием коллоидных частиц, определяющим в значительной степени устойчивость дисперсной системы. Все эти феномены, к знакомству с которыми мы переходим, оказываются взаимосвязанными посредством ДЭС. Для выражения этой связи мы вводим термин, появившийся последнее время в литературе, — э л е к т р о п о в е р х н о с т н ы е явления. Этим общим термином мы обозначаем все следствия, имеющие своей причиной существование ДЭС на поверхности раздела фаз. Круг их настолько обширен, что часть из них, непосредственно не связанная с дисперсными системами, рассматривается в электрохимии, в физике твердого тела, в геофизике и других дисциплинах. Однако несомненно, что обобщенное изучение всех следствий существования ДЭС должно составить предмет физической химии дисперсных систем и поверхностных явлений. [c.192]

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризаци- [c.196]

    Как было показано в 1 данной главы, пространственное разделение зарядов в двойном электрическом слое является причиной возникновения электрокинетических явлений. Находясь в двух контактирующих фазах, потенциалопределяющие ионы и противоионы могут сдвигаться относительно друг друга при взаимном смещении фаз, обусловливая возникновение электрического тока, или, наоборот, вызывать взаимное смещение фаз прн наложении внешнего электрического поля. В основе электрокинетических явлений лежит, таким образом, совокупность связанных между собой электрических и гидродинамических (механических) процессов. Поэтому электрокинетические явления могут служить характерным примерам и важныг4 объектом приложения основного соотношения термодинамики необратимых процессов соотношения взаимности Онзагера, которое выступает при этом как методическая основа для рассмотрения всей совокупности разнообразных электрокинетических явлений. [c.187]


Смотреть страницы где упоминается термин Двойной электрический слой и электрокинетические явления: [c.265]    [c.217]    [c.190]   
Смотреть главы в:

Физическая и коллоидная химия -> Двойной электрический слой и электрокинетические явления




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Электрокинетические явлени

Электрокинетические явления



© 2025 chem21.info Реклама на сайте