Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрокапиллярные явления и двойной электрический слой

    Согласно современной теории двойного электрического слоя получили объяснение электрокинетические и электрокапиллярные явления, а также проблемы строения и устойчивости коллоидных частиц лиофобных золей. Согласно этой теории при относительном движении жидкой и твердой фаз плоскость скольжения их лежит на некотором расстоянии от твердой фазы (рис. 94, а, линия тп). [c.315]


    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда — основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризационные явления, происходящие при этом, и, наконец, явления, связанные с электростатическим взаимодействием коллоидных частиц, определяющим в значительной степени устойчивость дисперсной системы. Все эти феномены взаимосвязанные посредством ДЭС, на- [c.178]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]

    ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ И ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ Задача 1. Исследование электрокапиллярных явлений [c.179]

    ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ И СТРОЕНИЕ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ [c.204]

    Современные экспериментальные методы исследования и особенно изучение электрокапиллярных явлений могут дать представление о строении двойного электрического слоя. Еще в начале прошлого века было замечено, что форма поверхности ртутной капли, находящейся в растворе, зависит от сообщенного ей заряда. Если с поверхности ртути укрепленной иглой периодически снимать заряд, то капля ртути начнет совершать сложные движения. Это явление — ртутное сердце можно объяснить, если предположить, что поверхностное натяжение ртути зависит от возникновения двойного электрического слоя на металле и, следовательно, от скачка потенциала на границе фаз ртуть — раствор. Наблюдать такую зависимость очень удобно с помощью капиллярного электрометра (рис. 34), который состоит из двух ртутных электродов, сообщающихся через разбавленный раствор серной кислоты. Один из электродов — анод (ртуть в каломельном полуэлементе 4 обладает большой поверхностью и при прохождении тока практически не поляризуется), другой же электрод находится в трубке, заканчивающейся капилляром, и имеет весьма ограниченную поверхность (ртуть в капле), которая меняется [c.204]


    Как следует из данных табл. 35, значения -потенциала отличаются от соответствующих электродных потенциалов не только по величине, но и по знаку. Потенциал Ф на границе стекло — водный раствор меняется в зависимости от концентрации ионов Н3О+ в растворе, что вполне закономерно, если иметь в виду, что стеклянный электрод ведет себя подобно водородному. Эти же ионы почти не влияют на величину электрокинетического потенциала. Наоборот, присутствие ряда других ионов, почти не изменяющих величину термодинамического потенциала ф, чрезвычайно резко влияет на -потенциал. Главную роль при этом играют зарядность и знак посторонних ионов, их электрокапиллярные свойства. Эти явления объясняются, как мы видели, в теории двойного электрического слоя. [c.248]

    Рассмотрены главные этапы развития термодинамической теории электрокапиллярности. Представлены основные уравнения электрокапиллярности для идеально поляризуемого и обратимого электродов, а также соотношения, вытекающие из этих уравнений. Обсужден физический смысл величин, входящих в уравнения электрокапиллярности идеально поляризуемого и обратимого электродов. На примере электродов из металлов группы платины и амальгам таллия продемонстрированы пути и результаты проверки термодинамической теории электрокапиллярности для обратимых систем. Показано, что термодинамический подход к явлениям хемосорбции с переносом части заряда адсорбированных частиц на поверхность металла позволяет определить формальный коэффициент переноса заряда, который отражает как долю заряда, перешедшего с адсорбирующейся частицы на электрод, так и вызванное процессом адсорбции изменение параметров двойного электрического слоя на границе электрод—раствор. Обсуждены экспериментальные данные, иллюстрирующие различие между поверхностным натяжением и обратимой поверхностной работой для твердых металлов. [c.215]

    Как уже упоминалось, емкостные токи на струйчатом электроде достигают значений порядка 10 aie. Гейровский [3] наблюдал интересное явление — уменьшение емкостного тока практически до нуля в области потенциала максимума электрокапиллярной кривой, когда длина струи ртути, проходящей через раствор, была меньше 3 мм. При определенных потенциалах (справа и слева от максимума электрокапиллярной кривой в данном растворе) на кривых зависимости емкостного тока от потенциала наблюдается резкое (с разрывом непрерывности) увеличение тока до нормальных значений емкостного тока в этих условиях. Это явление объяснил Валента [4]. В обычных условиях (когда наблюдается нормальный емкостный ток) струя ртути уносит из раствора вещества и заряды, составляющие двойной электрический слой на границе ртуть — электролит. Протекание емкостного тока обусловлено тем, что вновь образующаяся поверхность ртути. [c.50]

    ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ И ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ [c.96]

    Таким образом, электрокинетические и электрокапиллярные явления, устанавливая изменение заряда поверхности электрода с изменением электродного потенциала при введении или в отсутствие специфически адсорбирующихся ионов либо молекул, дают определенные представления о строении двойного электрического слоя. [c.101]

    При изучении электрокинетических и электрокапиллярных явлений были установлены определенные опытные закономерности. Теория строения двойного электрического слоя металл-электролит должна служить основой для их истолкования. Вместе с тем из этих же опытных фактов следует исходить при оценке правильности тех или иных представлений о структуре двойного электрического слоя их можно кратко суммировать следующим образом. [c.266]

    Для формирования современных представлений о строении двойного электрического слоя большое значение имели результаты, полученные при изучении электрокинетических и электрокапиллярных явлений. [c.227]

    С представлением о двойном электрическом слое мы уже познакомились при рассмотрении механизма возникновения скачка потенциала на электроде. Очевидно, что более подробное исследование строения такого двойного слоя может быть очень полезным при изучении электродных процессов. Кроме того, существуют различные электрохимические явления, в первую очередь так называемые электрокапиллярные и электрокинетические явления, теория которых не может быть успешно построена без отчетливого физического представления о строении двойного слоя на границе твердое тело — раствор электролита. [c.245]

    Наличием двойного электрического слоя у поверхности раздела ртути и раствора ее соли объясняются некоторые явления, называемые электрокапиллярными. Прежде чем перейти к описанию этих явлений, остановимся на уравнении адсорбции Гиббса. Это уравнение выводится из термодинамических соображений. Свободная энергия Р поверхностного слоя в 5 см-равна поверхностной энергии этого слоя и свободной энергии адсорбированного вещества [c.418]


    Согласно современной теории двойного электрического слоя получили объяснение электрокинетические и электрокапиллярные явления, а также проблемы строения и устойчивости коллоидных частиц лиофобных золей. Согласно этой теории при относительном движении жидкой и твердой фаз плоскость скольжения их лежит на некотором расстоянии от твердой фазы (рис. 168, линия тп). Слой жидкой фазы толщиной в 2—3 молекулы при движении фаз остается неподвижным вместе с твердой фазой. Иными словами, непосредственно у поверхности коллоидной частицы золя образуется так называемый адсорбционный слой, который включает не только потенциалопределяющие ионы (знак которых противоположен знаку твердой фазы), но и часть противоионов, которые в обычных условиях считаются неподвижны- ми и при движении твердой фазы перемещаются вместе с ней. Ос- [c.399]

    Изучением электрокапиллярных явлений и строения двойного электрического слоя на границе металл—раствор занимался советский ученый А. И. Фрумкин. Электрохимическая теория коррозии была развита в трудах Г. В. Акимова, В. А. Кистяковского и др. [c.226]

    Электрокапиллярные явления. Весьма удобный объект для изучения свойств и строения двойного электрического слоя — поверхность раздела ртуть — водный раствор. Еще в начале прошлого века было замечено, что наложение разности потенциалов влияет на форму ртутной капли в воде. [c.92]

    Параметры, характеризующие двойной электрический слой, могут быть получены при изучении электрокапиллярных явлений, т. е. явлений, связанных с зависимостью обратимой поверхностной работы о от потенциала электрода Е. Эта зависимость может быть экспериментально определена для границы раздела жидкий электрод — раствор, так как в этом случае можно менять величину поверхности раздела фаз в обратимых условиях. [c.72]

    На эффективность модификации пленок жидкостями большое влияние оказывают параметры смачивания и растекания. Они поддаются регулированию с помощью электрокапиллярных явлений -изменения поверхностного натяжения на границе твердой и жидкой фаз вследствие скачка электрического потенциала на этой границе. Поверхностное натяжение о на границе пленка - жидкость зависит не только от структуры составляющих их веществ, но и от свойств образующегося на границе двойного электрического слоя. Используя термодинамическое уравнение Фрумкина [92], можно представить зависимость о от потенциала ф поверхности пленочного электрета как [c.132]

    При изучении электрокинетических и электрокапиллярных явлений были установлены определениьк опытные закономерности. Корректная теория строения двойного электрического слоя металл — электролит должна давать нх истолкование. Эти же факты служат критерием сираведливости тех 1ли иных вариантов теории двойного электрического слоя. [c.260]

    В книге изложены современные теории прохождения тока через растворы электролитов приведены основные положения теории слабых и сильных электролитов рассматриваются электродвижущие силы гальванических элементов и скачки потенциалов, возникающие на границе фаз описываются концентрационные элементы и условия их применения анализируется строение, свойства и теория двойного электрического слоя даны сведения об электрокапиллярных и электроки-нетических явлениях приводится анализ природы и особенностей электродной поляризации рассматриваются современная теория и закономерности электроосаждения металлов из растворов их простых и комплексных солей представлены новейшие данные по коррозии металлов и явлению пассивности. [c.2]

    СТРОБНИБ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ. ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ [c.228]

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда основную роль не только в процессах адсорбции ионов и ионного обмена, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы электрокапиллярные и электрокинетические явления процессы массо- и энергообмена в капиллярно-пористых телах поляризаци- [c.196]

    Данная книга отражает в определенной мере специфику работы кафедры коллоидной химии на химическом факультете МГУ. Это проявляется, с одной стороны, в особом внимании авторов к разделам, отвечающим области научных интересов кафедры, и, с другой стороны, в стремлении к преодолению, по возможности, дублирования материала по тем смежным разделам, которые изучаются на кафедрах физической химии, электрохимии, высокомолекулярных соединений. Это относится, в частности, к таким вопросам, как адсорбция твердой поверхностью (микропористыми адсорбентами) из газовой фазы строение плотной части двойного электрического слоя, электрокапиллярные явления специфика поведения дисперсий ВМС и некоторые другие. В названных случаях вопрос затрагивается лишь в той мере, в которой материал является коллоидно-химическим по существу и совершенно необходим по логике построения курса. Интересующиеся найдут подробности в цитируемых руководствах и пособиях, в том числе в зарекомендовавших себя учебниках Д. А. Фридрихсберга, С. С. Воюцкого, А. Д. Ше-лудко, А. Г. Пасынского, а также в новой монографии А. Адамсона. Авторы полагают, что наличие ряда пособий, отражающих научное лицо и педагогический опыт коллоидно-химических школ, должно способствовать глубокому, всестороннему и непредвзятому изучению этой важной, интересной области химической науки. [c.4]

    Сведения о строении двойного электрического слоя и природе ряда коллоидно-химических процессов, происходящих при взаимодействии ионов с границей раздела фаз, дает изучение электрокапиллярных явлений, т. е. влияния заряда межфазной поверхности на поверхностное натяжение. Эти явления наиболее подробно рассматриваются в курсах электрохимии здесь же будут приведены только те основные закономерности электрокапиллярных явлений, которые существенно необходимы при рассмотрении коллоидно-химических явлений специфики адсорбции анионных и катионных ПАВ, особенностей зародыше-обра13ова1Н1Ия. новой фазы (с. 273) (И проявления эфф>екта Ребиндер а в условиях. 3 а,ряженной поверхности (см. 342). [c.214]

    Э.гектрокинетические явления, электрокапиллярные яв-. ения и ионный - изучение влияния двойного электрического слоя и его изменения при введении электролитов на скорость электрофореза и электроосмоса, значения токов и потенциалов течения дисперсионной срсды и седиментации дисперсной фазы, мембранные эффекты, в т.ч. явления обратного осмоса в мембранах. [c.434]

    В заключение отметим, что объединенное уравнение первого и второго законов термодинамики, дополненное электростатической работой, вызванной поляризацией поверхностного слоя двух контактирующих жидких фаз, позволяет построить молекулярную термодинамику поверхностных явлений получить обобщенное уравнение электрокапиллярности (см. (1.14), следствия из которого дают возможность определить поверхностный скачок потенциала на границе жидкость - газ (1.25, 1.26), жидкостной потенциал (1.37), уравнение эл ектр окапил лярно сти (1.43), выражение для величины дифференциальной емкости двойного электрического слоя границы металл - раствор (1.46), смещение потенциала электрокапиллярного максимума (1.53) и многое другое. Все эти соотношения непротиворечиво описывают зависимость поверхностных натяжения и заряда, емкости двойного слоя, скачка потенциала на межфазной границе от таких индивидуальных параметров жидкости, как поляризуемость, дипольный момент, показатель преломления, количество молекул в единице объема, которые ранее или вовсе не учитывались или им придавали второстепенную роль. Эвристическая ценность данного исследования на этом не исчерпывается, поскольку приведенные соотношения открывают широкую перспективу для дальнейших исследований межфазных процессов. [c.30]

    В этом кратком приложении даны некоторые сведения, необходимые для углубленного понимания современной теории электродных процессов. Эти сведения нельзя было дать в примечаниях вследствие их большого объема. Речь будет итти об электрокапиллярных явлениях, о свойствах двойного электрического слоя и о влиянии его строегйш на скорость электродных процессов.  [c.725]

    ЭЛЕКТРОКАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - явления, связанные с зависимостью поверхностного натяжения а на границе раздела электрод — раствор от потенциала электрода ф п обусловленные образованием на этой границе двойного электрического слоя. Графич. изображение зависи.мостн о от ф наз. элек т-р о к а п и л л я р и о й кривой. Впервые Э. я. были исследованы Г. Липманом и Ж. Гуи в конце [c.467]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов построение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследователями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных явлений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]


Смотреть страницы где упоминается термин Электрокапиллярные явления и двойной электрический слой: [c.257]    [c.10]    [c.96]   
Смотреть главы в:

Лабораторный практикум по теоретической электрохимии -> Электрокапиллярные явления и двойной электрический слой




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Электрокапиллярные

Электрокапиллярные явления



© 2025 chem21.info Реклама на сайте