Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственная структура белков

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]


    Водородные. связи имеют огромное значение для организации пространственной структуры белков и нуклеиновых кислот. Как известно, белки представляют собой полимеры, построенные из а-аминокислот, соединенных пептидной связью  [c.108]

    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]

    Известно, что свойства белка могут сильно изменяться при замене одной аминокислоты другой. Это объясняется изменением конфигураций пептидных цепей и условий образования пространственной структуры белка, которая в конечном счете определяет его функции в ор ганизме. [c.375]

    Для изучения пространственной структуры белка используют раз-личные физико-химические методы, из которых наиболее эффективен рентгеноструктурный метод. [c.377]

    Растворимые в воде белки образуют коллоидные растворы. При нагревании или под действием некоторых реактивов (соли тяжелых металлов) они сворачиваются. При этом происходит денатурация белков — частичное или полное разрушение пространственной структуры белка при сохранении им первичной структуры, например термическая необратимая денатурация яичного белка. [c.311]

    В структуре этого класса белков обращает на себя внимание большое количество симметрично расположенных внутримолекулярных дисульфидных связей, которые в определенных условиях могут переходить в межмо-лекулярные дисульфидные мостики, тем самым меняя пространственную структуру белка в целом, и причем меняя ее существенно. [c.100]

    Переходя к анализу этих данных, а также современных теорий пространственной структуры белков, нео бходимо в (первую очередь провести разграничение между фибриллярными и глобулярными белками. [c.541]


    Растворимые в воде белки образуют коллоидные растворы При нагревании или под действием некоторых реактивов (соли тяжелых металлов) они сворачиваются При этом происходит денатурация белков — частичное или полное разрушение пространственной структуры белка при сохранении им первичной структуры, например термическая необратимая денатурация яичного белка При нагревании с водными растворами кислот и щелочей происходит полное разрушение белка — гидролиз до аминокислот, из остатков которых он был построен [c.311]

    После 1945 г. началось систематическое исследование пространственной структуры белков. Основываясь на работах по белковым конформациям [c.343]

    Для установления вторичной и третичной структур химические методы неприменимы. Для этой цели преимущественно применяют рентгеноструктурный анализ, причем из получаемой дифракционной картины рассчитывают распределение электронных плотностей в кристалле белка. Точное установление пространственных структур белков стало возможным благодаря работам Полинга и Кори. На аминокислотах, их амидах и простых пептидах в основном с помощью рентгенографических исследований были определены длины связей и валентные углы. Оказалось, что пептидная связь в значительной степени обладает характером двойной связи. Она является планарной, поэтому в пептидной цепи на один аминокислотный остаток приходятся лишь два места поворота. Одним является поворот вокруг С —К-связи (угол >р), другим — вращение вокруг оси С —С-связи (угол ф). Значения риф для всех остатков аминокислот определяют пространственное расположение цепи. [c.375]

    Методы установления пространственной структуры белков [c.383]

    При сычужно-кислотном способе свертывания молока сгусток формируется комбинированным воздействием сычужного фермента и молочной кислоты. Под действием сычужного фермента казеин на первой стадии переходит в параказеин, на второй — из параказеина образуется сгусток. Казеин при переходе в параказеин смещает изоэлектрическую точку с pH 4,6 до 5,2. Поэтому образование сгустка под действием сычужного фермента происходит быстрее, при более низкой кислотности, чем при осаждении белков молочной кислотой, полученный сгусток имеет меньшую кислотность, на 2... 4 ч ускоряется технологический процесс. При сычужно-кислотной коагуляции кальциевые мостики, образующиеся между крупными частицами, обеспечивают высокую прочность сгустка. Такие сгустки лучше отделяют сыворотку, чем кислотные, так как в них быстрее происходит уплотнение пространственной структуры белка. Поэтому подогрев сгустка для интенсификации отделения сыворотки не требуется. [c.195]

    Настоящий том, третий из намеченных монографий по проблеме белка, посвящен вопросам взаимосвязи между аминокислотной последовательностью, с одной стороны, и пространственным строением, динамическими конформационными свойствами и механизмом процесса свертывания беспорядочно флуктуирующей белковой цепи в нативную конформацию, с другой, т.е. - теоретическим аспектам структурной самоорганизации белка. Он является продолжением первых двух томов издания в которых были рассмотрены экспериментальные и концептуальные исследования химического и пространственного строения белковых молекул с момента возникновения работ в этих областях и по сегодняшний день. Автор подробно анализирует существующие представления о природе взаимоотношений между первичной и пространственной структурой белков, уделяя, естественно, особое внимание развиваемой им теории. [c.5]

    Совпадение результатов априорного расчета конформационных возможностей сложного белкового фрагмента с опытными данными о кристаллической структуре белка впервые убедительно подтвердило, во-первых, справедливость физической теории структурной организации белков, лежащей в основе данного расчета, и, во-вторых, реальность многостадийного подхода, использованных потенциальных функций и параметризации для количественной оценки невалентных взаимодействий, формирующих пространственную структуру белка. [c.426]

    В книге, написанной авторами из ФРГ, изложены современные представления о принципах, определяющих формирование-пространственной структуры белков, причем вопрос о структурной организации этих важных биополимеров рассматривается а неразрывной связи с их биологическими функциями. [c.4]

    Понятно, что первые исследователи были приведены в замешательство открытием, каких размеров может достигать полипептид-ная цепь в некоторых белках, согласно оценкам их молекулярной массы. Некоторые авторы [3] пришли к заключению, что имеющаяся конфигурация действует таким образом, что помогает молекуле гораздо сильней уплотниться, чем это можно было ожидать на основании простейших и наиболее очевидных предположений . Большие успехи в исследовании биополимеров, таких как белки н нуклеиновые кислоты, а также становление молекулярной биологии в значительной степени произошли в результате понимания того факта, что такие ограничения, накладываемые на форму и размер частиц, действительно существуют. Определение точной пространственной структуры белков с помощью кристаллографической техники и в ряде случаев исследования, которые показали дискретные изменения в конформации белков, когда они вступали в [c.219]


    Связь между первичной и пространственной структурами белка [c.108]

    Межмолекулярные водородные связи обусловливают некоторые физические свойства веществ (например, высокую температуру юшсга1Я воды). Внугримолекулярные водородные связи очень важны при образовании пространственной структуры белков. [c.102]

    Определение пространственной структуры белков по аминокислотным последовательностям - одна из центральных задач молекулярной биофизики. Традиционные подходы, применяемые к расчету структуры небольших органических молекул, неэффективны для решения этой задачи в связи со следущими ососбенностями а) огромным числом переме1пшх, описывающих атомную структуру бел- [c.111]

    В эти годы созданы новые физ.-хим. методы аиализа. Были заложены основы хроматографич. методов (М. С. Цвет, 1906). В 20-х гг. Т. Сведберг предложил использовать для седиментации белков ультрацентрифугу, вскоре этим методом был выделен ряд вирусов. В 30-х гг. А. Тизе-лиусом заложены основы электрофореза, в 1944 А. Мартином и др. создана распределит, хроматография, для определения структуры прир. соед. впервые стал использоваться рентгеноструктурный анализ (Д. Кроуфут-Ходжкин, 40-е гг.). Благодаря использованию физ.-хим. методов в 50-х гг. достигнуты крупные успехи в изучении двух важнейших классов биополимеров-белков и нуклеиновых к-т Э. Чар-гафф провел детальный хим. анализ нуклеиновых к-т, открыта двойная спираль ДНК (Дж. Уотсон и Ф. Крик, 1953), определена структура инсулина (Ф. Сенгер, 1953), одновременно осуществлен синтез пептидных гормонов -окситоцина и вазопрессина (Дю Виньо, 1953), открыт один из элементов пространственной структуры белков- спираль (Л. Полинг, 1951). В эти годы Р. Замечником открыты рибосомы, что послужило стимулом для изучения механизма синтеза белка. [c.292]

    Поскольку определение электронных плотностей с небольшим разрешением (0,5 нм) не столь трудоемко, обычно начинают исследование структуры кристалла белка с этого этапа. Тонкая структура, т. е. положение отдельных атомов, требует разрешающей способности 0,15 нм. Развитие этого метода, осуществленное в 1952 — 1960 гг. лабораториями Кендрью и Перутца, стало значительным научным достижением. Обзоры по установлению пространственной структуры белков написаны Хоппе [161], а также Дикерсоном и Гайсом [78]. К настоящему времени известны пространственные структуры более 50 белков. [c.384]

    Первая задача заключается в изучении структурной организации и создании теории, устанавливающей логическую и количественную взаимосвязь между аминокислотной последовательностью и пространственной структурой белка, предсказывающей его конформационные и электронные свойства. Цель следующей задачи состоит в изучении физико-химических свойств белка и, основываясь на знании не только геометрии, но и структурной организации белковой молекулы, выявлении принципов ее функционирования, иными словами, разработке теории структурно-функциональной организации белка. Третья задача направлена на создание общей теории рассматриваемой функции (здесь биокатали-тической), учитывающей решения предшествующих задач, особенности ферментативного катализа, физико-химические основы этого явления и возможности современного естествознания. [c.77]

    Рнс. М- Ближние (а), средние (б) и дальние (в) взаимодействия валентно-несвязанных атомов аминокислотных остатков, опреде-JgпoШИX пространственную структуру белка [c.105]

    В анализе белков, однако, требовалось рассмотрение не единичных структурных вариантов элементарных звеньев (пусть и правильно предсказанных) гомополипептидов, а множества, причем не независимо, а в сочетании друг с другом. Здесь важно было не упростить расчетную модель, не выхолостить физический смысл и не свести ее к представлению о пространственной структуре белка как ансамбле регулярных канонических форм а-спиралей и (i-складчатых листов. От этого ложного шага автора предостерегли результаты исследования Д. Филлипса трехмерной структуры лизоцима [55], После миоглобина и гемоглобина он бььт третьим белком, у которого было расшифровано с помощью рентгеноструктурного анализа молекулярное пространственное строение. И если трехмерные структуры первых двух белков содержали не менее 15% а-спиральных остатков, то структура лизоцима оказалась существенно [c.108]

    Исследование конформационных возможностей олигопептидных белковых фрагментов в принципе не отличается от исследования молекул природных олигопептидов. Осложняющее обстоятельство возникает вследствие необходимости при анализе белковых фрагментов делать исчерпывающее заключение не только о конформационных состояниях, предпочтительных по ближним и средним взаимодействиям, но также о состояниях, удовлетворяющих условиям дальних взаимодействий, узнать которые заранее не представляется возможным. Следовательно, требуется, чтобы в набор отобранных по ближним и средним взаимодействиям конформаций каждого белкового фрагмента обязательно вошла бы та его единственная и неизвестная пока конформация, которая реализуется в нативной пространственной структуре белка под дополнительным воздействием контактов между удаленными по цепи остатками. Ясно, что она автоматически окажется среди низкоэнергетических конформаций свободного фрагмента только при отсутствии у белковой глобулы противоречий между средними и дальними взаимодействиями. Таким образом, вопрос о согласованности этих взаимодействий имеет решающее значение для апробации физической модели количественной конформационной теории белковых молекул. [c.413]

    Однако в этом расчете была учтена только химическая сторона процесса. Важно посмотреть, насколько данная оценка может измениться, если учесть энтропийный гфоигрыш за счет упорядоченного расположения аминокислотных остатков вдоль цепи синтезируемого белка, а также за счет фиксированной пространственной структуры белка. Оказывается, учет детерминированного расположения аминокислотных остатков в полипептидной цепи вносит сравнительно небольшую поправку — около -1-10 кДж (-f2,5 ккал) на моль аминокислоты. Что касается энтропийного фактора за счет упорядочения пространственной структуры синтезируемого полипептида, то здесь энтропийный проигрыш (понижение энтропии) более существен, но он компенсируется энтальпийным выигрышем в результате нековалентных взаимодействий аминокислотных остатков. Таким образом, в любом случае синтез белка сопровождается диссипацией большого количества свободной энергии. [c.61]

    Общим для всех этих видов брожения является то, что все они протекают как ферментативные процессы с участием биокатализаторов оксигеназ (окислительных ферментов), гидрогеназ (восстановительных ферментов), декарбоксилаз (ферментов декарбоксилирования) и т. д. Специфичность протекания реакций разложения одних и тех же гексоз до тех или иных продуктов определяется природой ферментов, которые имеют различную пространственную структуру белка, разные реакционные центры (металлические или неметаллические, комплексные или простые и т. д.), пространственное экранирование реакционных центров и каналы в структуре белка для движения реагентов. [c.644]

    Рентгеноструктурный анализ позволяет определить конформацию п ход полипептидной цепи в пространстве, поэтому для каждого белка может быть построена объемная модель, отражающая местоположение линейных п сппралпзованиых участков. При изучении глобулярных белков было показано, что пространственная структура белков в сильной степени зависит от ряда факторов, в частности от ионной силы п pH раствора, температуры п т.д. Новейшие методы дифракции рентгеновских лучей [c.65]

    В настоящее время получены бесспорные доказательства, что в стабилизации пространственной структуры белков, помимо ковалентных связей (пептидные и дисульфидные связи), основную роль играют так называемые нековалентные связи (рис. 1.22). К этим связям относятся водородные связи, электростатические взаимодействия заряженных групп, межмолеку-лярные ван-дер-ваальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия и т.д. [c.66]

    Рассматривая корреляцию первичной и пространственной структуры белка, мы встречаемся с важной проблемой моле су-лярной биологии. В сущности речь идет о двух корреляциях — [c.110]

    Игра в тРНК или как делать клеверные листья выглядит следующим образом. Каждому игроку дается случайная последовательность из N единиц, принадлежащих к четырем классам — А, "У, Г, Ц, и тетраэдрическая кость, каждая грань которой соответствует одной из этих букв. Игроки бросают кость по очереди и, заполняя определенное место в последовательности выпавшей буквой, каждый игрок стремится получить двухцепочечную структуру с максимальным числом пар АУ и ГЦ. Игра окончена, когда один из игроков объявляет, что он получил полную структуру. Побеждает игрок, набравпгий к этому моменту максимальное число очков. Очки засчитываются за пары можно, например, давать два очка за пару ГЦ и одно очко за АУ. Пары можно образовывать, лишь если имеется непрерывная последовательность 2 ГЦ или ГЦ, 2 АУ или 4 АУ (правило кооперативности). Для каждой петли в структуре должны оставаться неспаренными не менее 5 положений (ср. рис. 8.8). Игрок бросает кость для любого заранее им объявленного положения в последовательности. При = 80 действительно всегда получается структура типа клеверного листа с 3—4 лепестками. Шпилька, имеющая только одну петлю, содержит максимальное число оснований, которые могут спариваться. Однако клеверный лист дает возможность испытать гораздо большее число комбинаций, так как отдельные лепестки можно сдвигать независимо и с самого начала возможно гораздо большее число комбинаций. Природа, видимо, играет в эту игру с давних времен ,— пишет Эйген. Игра сходного типа может быть, по-видимому, разработана и при решении задачи о взаимосвязи первичной и пространственной структур белка ( 4.6). [c.271]


Смотреть страницы где упоминается термин Пространственная структура белков: [c.374]    [c.111]    [c.125]    [c.131]    [c.132]    [c.168]    [c.198]    [c.401]    [c.620]    [c.403]    [c.429]    [c.189]    [c.592]    [c.59]    [c.60]    [c.159]    [c.110]   
Смотреть главы в:

Биологическая химия -> Пространственная структура белков

Химия биологически активных природных соединений -> Пространственная структура белков




ПОИСК





Смотрите так же термины и статьи:

Структуры пространственные



© 2025 chem21.info Реклама на сайте