Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные взаимодействия в дисперсных системах

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    Выше отмечалось, что дисперсные системы классифицируют по степени молекулярного взаимодействия дисперсной фазы и дисперсионной среды на лиофильные и лиофобные (см. гл. XV, 3). Дисперсные системы классифицируют, кроме того, по характеру взаимодействия между частицами. [c.225]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Такие четырехкомпонентные микроэмульсионные системы, включающие мицеллообразующие ПАВ, обычное ПАВ (чаще всего это спирты С5—С12), углеводород и воду, а также пятикомпонентные системы, содержащие, помимо перечисленных веществ, электролиты, приобрели особое значение в последние годы в связи с проблемой повышения нефтеотдачи пластов, о которой говорилось в гл. П1. Тонкое регулирование полярности дисперсионной среды за счет изменения концентрации компонентов, длины цепи углеводорода и спирта и природы (гидрофильно-липофильного баланса) мицеллообразующего ПАВ позволяет в этих случаях получать как прямые, так и обратные микроэмульсии. Они могут находиться в равновесии с макрофазой — молекулярным раствором того же состава, что и состав дисперсной фазы микроэмульсии. Подобно случаю двухкомпонентных критических систем (см. 2), соответствующим подбором состава здесь удается получить микроэмульсии — обратные и прямые, равновесные друг с другом и, кроме того, с дисперсионной средой промежуточной полярности. Такие микроэмульсионные системы могут образовывать фазовую границу раздела с очень малым поверхностным натяжением как с водой, содержащей определенную концентрацию солей, так и с углеводородом. Для этого необходимо достижение такого баланса молекулярных взаимодействий в объемах и на границе фаз, когда ПАВ обнаруживает примерно одинаковую поверхностную активность при адсорбции на границе из обеих фаз водной и масляной. [c.235]


    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]

    Молекулярно-кинетическая теория рассматривает коллоидные системы как частный случай истинных растворов дисперсную фазу — как растворенное вещество, дисперсионную среду — как растворитель. Это позволяет вполне удовлетворительно объяснить явления осмоса, диффузии,, седиментационного равновесия и другие неспецифические свойства коллоидов (т. е. свойства, не связанные с проявлением молекулярных взаимодействий на поверхности коллоидных частиц). [c.19]

    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    По характеру молекулярных взаимодействий на границе раздела фаз, согласно классификации П. А. Ребиндера [13], все жидкие двухфазные дисперсные системы, в том числе и нефтяные, делятся на две группы по величине удельной свободной межфазной энергии (от). Эта величина определяется соразмерным значением средней кинетической энергии теплового (броуновского) движения [c.12]

    Обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой, В случае обратимых систем дисперсная фаза молекулярно взаимодействует с дисперсионной средой, растворяясь в ней. Дисперсная фаза необратимых систем пе растворяется полностью в дисперсионной среде. [c.37]

    Как известно, проявление сил межмолекулярного взаимодействия в нефтяных дисперсных системах способствует возникновению в них молекулярных агрегатов и других типов надмолекулярных структур. Такие структуры в системах с различной [c.40]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]


    Минимальный размер коллоидных частиц определяется требованием к дисперсной системе быть гетерогенной, т. е. частицы дисперсной фазы должны иметь поверхность и находиться в определенном агрегатном состоянии. Такими свойствами не обладают отдельные атомы или молекулы. Только применительно к их достаточно большой совокупности (согласно молекулярно-кинетической теории их должно быть не менее 11 — 15) можно говорить о твердом теле, жидкости или газе, поскольку агрегатное состояние поверхности определяется подвижностью частиц и их взаимодействием. [c.256]

    Коалесценция частиц дисперсной фазы приводит к изменению дисперсности системы. Устойчивость к процессам коалесценции и коагуляции в реальных нефтяных дисперсных системах различна. Для рассмотрения механизмов образования элементов дисперсной фазы в нефтяных дисперсных системах удобно рассмотреть надмолекулярные структуры в системе, а может быть и частицы дисперсной фазы, состоящие из смолисто-асфальтеновых веществ или высокомолекулярных парафиновых углеводородов, в виде жестких тел с малыми размерами, определенной формы и некоторым запасом поверхностной энергии, способствующей взаимодействию этих тел, с образованием пространственных структур наивыгоднейшей конфигурации, то есть наиболее компактных и с минимально возможным объемом. При пониженных температурах этот процесс приводит в конечном итоге к образованию упорядоченной кристаллической структуры. При повышенных температурах, вследствии дезорганизующего воздействия теплового движения, устанавливается лишь частичное равновесие сосуществующих в системе молекулярных или надмолекулярных группировок конечных размеров, имеющих сходную ориентацию. Подобные группировки в нефтяных дисперсных системах отличаются расплывчатыми границами, образованными переходным сольватным слоем. Определение размеров элементарных группировок в нефтяных дисперсных системах является достаточно сложной задачей, не решенной окончательно до последнего времени. [c.56]

    Ранее коллоидные системы разделяли также по интенсивности молекулярного взаимодействия на границе раздела фаз — на две основные группы а) лиофильные системы и б) лиофобные системы. Названия происходят от греческих слов лио — растворяю, фил—люблю, фоб — имею отвращение. Эти названия характеризуют сильное или слабое взаимодействие между молекулами среды и дисперсной фазы. [c.17]

    Различие состава и строения соприкасающихся фаз и связанный с этим различный характер молекулярных взаимодействий в объеме фаз обусловливают возникновение своеобразного ненасыщенного молекулярного силового поля на поверхности раздела между ними и вследствие этого повыщение плотности термодинамических функций свободной энергии, внутренней энергии, энтропии на данной поверхности. Огромная межфазная поверхность, присущая дисперсным системам, определяет особо важную роль, которую играют в них явления, протекающие на границе раздела фаз, — поверхностные явления. [c.14]

    МОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ В ДИСПЕРСНЫХ СИСТЕМАХ [c.246]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Как было показано ранее (см. соотношение IX—19), энергия молекулярного взаимодействия частиц зависит от природы дисперсной фазы и дисперсионной среды, что отражается величиной сложной константы Гамакера А. С учетом этого, условие устойчивости системы к коагуляции можно представить в виде  [c.253]

    Молекулярные взаимодействия в дисперсных системах [c.352]

    Под агрегативной устойчивостью следует понимать способность системы противостоять процессам, ведущим к уменьшению свободной энергии поверхностей раздела частиц дисперсной фазы с дисперсионной средой. Увеличение размеров частиц, ведущее к уменьшению поверхности, может осуществляться в результате изотермической перегонки, коалесценции (слияния частиц) и коагуляции (агрегирования частиц при слипании) [54]. Основным процессом изменения дисперсности для суспензий и золей является коагуляция. Для нее необходим непосредственный контакт поверхностей частиц (по крайней мере на расстоянии молекулярного взаимодействия), поэтому тепловое движение является важным фактором стабилизации, особенно для свободнодисперсных систем. [c.41]

    Принято также различать системы по степени молекулярного взаимодействия дисперсной фазы с дисперсионной средой. Системы, для которых характерно интенсивное взаимодействие дисперсионной среды с поверхностью дисперсной фазы, выражающиеся в образовании развитых сольватных слоев, называются лиофильными. Если взаимодействие выражено очень слабо, то системы называют лио-фэбными. Применительно к водной дисперсионной среде системы называют соответственно гидрофильными и гидро-фобныьш. [c.11]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    НДС могут быть обратимыми и необратимыми. Если дисперсная фаза способна обратимо взаимодействовать с диснерсиоцной средой, то такие дисперсные системы являются обратимыми. К подобным системам относится основная масса НДС, в которых дисперсная фаза может самопроизвольно растворяться в дисперсион-пой среде вплоть до образования молекулярных растворов. [c.16]

    С углублением переработки нефти содержание асфальто-смолистых веществ в топливах будет увеличиваться, поэтому все более острой становится проблема производства стабильных котельных топлив. Асфальтены в мазутах находятся в коллоидном состоянии. Устойчивость асфальтено-содержаших дисперсных систем зависит от природы циклического углеводорода и его 1Сонцентрации в дисперсной среде. Наличж ароматических и нафтеновых углеюдородов повышает седиментацион-ную устойчивость дисперсной системы, причем для ароматических углеюдородов этот эффект значительно больше, чем для нафтеновых ароматические углеводороды более склонны к взаимодействию с молекулами асфальтенов, растворимость последних тем больше, чем выше концентрация ароматического компонента. В такой среде асфальтены диспергируются с образованием тонкодисперсных коллоидньк и молекулярно-дисперсных частиц. В среде парафиновых углеюдородов образуется преимущественно грубодисперсная система. Так как нафтеновые угле-юдороды по строению являются промежуточными между парафиновыми и ароматическими, то и кинетическая и агрегативная устойчивость [c.111]

    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]

    Дисперсные системы с жидкой дисперсионной средой, лиозоли, классифицируют по интенсивности молекулярного взаимодействия на границе раздела фаз. При этом с учетом обратимости или необратимости взаимодействия дисперсной фазы и дисперсионной среды различают соответственно лиофильные илилиофобные дисперсные системы. Дисперсная система считается обратимой, если сухой остаток, полученный после выпаривания дисперсионной среды, самопроизвольно в ней растворяется при повторном контакте, образуя коллоидную систему. [c.17]

    Жидкие нефтяные системы могут находиться в молекулярном и коллоидно-дис-персгюм состоянии. Парообразные и твердые нефтяные системы практически всегда представляют собой дисперсные системы. Нефтяные дисперсные системы характеризуются пространственным строением, наличием элементов дисперсной фазы, находящихся во взаимодействии, за счет чего они проявляют некоторые коллективные свойства, определяющие во многом поведение систем в условиях их добычи, транспорта, переработки и хранения. [c.36]

    Таким образом, на температуру застывания системы возможно оказывать наиболее полное целенаправленное влияние, если система первоначально находится в молекулярном состоянии. Ингибирование парафиноотложения в нефтяных системах можно проводить в любых условиях их существования, даже в турбулентном потоке, когда гидродинамически подвижными телами в виде обломков разрушенных структур являются достаточно крупные агрегативные комбинации. Как показывает накопленный феноменологический материал, подобные взаимодействия дисперсных частиц независимо от их агрегатного состояния возможно описать общими закономерностями в различных нефяных дисперсных системах. [c.241]

    Несмотря на бесспорную связь между размером частиц и свойствами дисперсной системы, неверно все особенности дисперсной системы объяснять только дисперсностью, как это делал, например, немецкий ученый Во. Оствальд. Исходя из допущения о примате размера частиц над всеми остальными свойствами. Во. Оствальд даже предложил называть науку о коллоидных системах не коллоидной химией, а дисперсоидологией, т. е. учением о дисперсном состояние материи. Советскими учеными, и в первую очередь Н. П. Песковым, было указано, что такой взгляд является односторонним и представляет собою чисто механистический подход. Дисперсоидологйя, сводившая все только к уменьшению или увеличению размера частиц, совершенно не учитывала сложного, в большинстве случаев сопровождающегося адсорбцией, Взаимодействия частиц дисперсной фазы с дисперсионной средой, а также возможность чисто химических взаимодействий при коагуляции. А между тем эти явления играют весьма важную роль в коллоидных системах. Кроме того, дисперсоидология, рассматривая все дисперсные системы как качественно тождественные и отличающиеся только размером частиц, не может объяснить особые свойства, которыми обладают коллоидные системы и которые отличают их как от молекулярно-дисперсных, так и грубодисперсных систем. [c.23]

    Фрейндлих высказал мнение, что обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. Исходя из этого, такие коллоидные системы Фрейндлих предложил также называть лиофиль-ными коллоидными системами (от греч. слова лиос — жидкость, фило — люблю). Дисперсная фаза необратимых коллоидов неспособна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней. Поэтому эти системы Фрейндлих назвал лиофобными (от греч. слова фобе — ненавижу). В том случае, когда дисперсионной средой системы является вода, эти два класса можно называть соответственно гидрофильными и гидрофобными системами (от греч. слова гидра —вода). [c.26]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    По характеру молекулярных взаимодействий на границе раздела фаз все дисперсные системы могут быть разделены на две большие группы. Это, с одной стороны, лиофильные системы, для которых характерна высокая степень родственности дисперсной фазы и дисперсионной среды и соответственно компенсирован-ности связей на границе раздела — сглаженность границы такие коллоидные системы, например критические эмульсии, могут образовываться самопроизвольно и обнаруживают полную термодинамическую устойчивость как относительно агрегирования, в макрофазы, так и относительно диспергирования до молекулярных размеров частиц. С другой стороны, это разнообразные лиофобные — коллоидно- и грубодисперсные системы, в которых дисперсная фаза и дисперсионная среда менее родственны и различие граничащих фаз по их химическому составу и строению проявляется в существенной некомпенсированности поверхностных сил (в избытке энергии) на межфазной границе. Такие системы термодинамически неустойчивы и требуют специальной стабилизации. Сюда относятся все аэрозоли, пены, многочисленные эмульсии, золи и т. д. Между теми и другими системами нельзя провести четкого разделения, поэтому представляется возможным рассматривачь широкий спектр промежуточных состояний. [c.7]

    Как отмечалось в главе I, существенная особенность дисперсионных межмолекулярных сил заключается в их аддитивности (по крайней мере, приближенной) взаимодействие двух объемов конденсированных фаз, разделенных зазором, является результатом суммирования притяжения всех отдельных молекул, составляющих эти объемы. Если ширина зазора заметно превосходит молекулярные расстояния, и недисперсионные силы оказываются уже неощутимыми, то энергия взаимодействия 11 (к) практически целиком определяется дисперсионными силами. Поэтому роль дисперсионных взаимодействий особенно существенна в дисперсных системах, где каждая частица представляет собой микрообъем конденсированной фазы, размеры которого велики по сравнению с молекулярными. В этом случае уже на заметных расстояниях (больших, чем молекулярные, но соизмеримых с размером самих частиц) может происходить частичная компенсация дисперсионных взаимодействий, т. е. частичное насыщение поверхностных сил. Это и отвечает возникновению между частицами дисперсной фазы сил притяжения. [c.246]

    Качественно тот же результат можно получить при более строгом рассмотрении молекулярных взаимодействий в дисперсных системах, основанном на так называемой макроскопической теории ван-дер-ваальсовых сил, развитой в работах Е. М. Лифшица, И. Е. Дзя-лошинского и Л. П. Питаевского. В отличие от микроскопической теории Гамакера, макроскопическая теория не содержит упрощенного предположения об аддитивности взаимодействий молекул, которое лежит в основе их суммирования, проведенного в 2 гл. I. Взаимное влияние молекул в конденсированных фазах может изменять значения поляризуемости и энергий ионизации по сравнению с их величинами для изолированных молекул и приводить к неаддитивности молекулярных взаимодействий. [c.249]

    Реологические свойства (структурно-механические свойства, температура застывания, вязкость и др.) НДС зависят в первую очередь от ее физического состояния, на которое оказывает влияние соотношение энергий мел молекулярного взаимодействия и твидового движения. Нефтяные дисперсные системы могут находиться в трех физических состояниях вязкотекучем (жидком), высокоэластическом и твердом. Способность к вязкому течению таких продуктов, как битумы, пеки, используют для их внутризаводского транспортирования ио трубопроводам. Для НДС характерно высокоэластическое состояние в интервале между температурами Стеклования и вязкотекучести (температуры размягчения). [c.18]


Смотреть страницы где упоминается термин Молекулярные взаимодействия в дисперсных системах: [c.377]    [c.42]    [c.294]    [c.5]    [c.16]    [c.282]    [c.155]   
Смотреть главы в:

Коллоидная химия 1992 -> Молекулярные взаимодействия в дисперсных системах




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия в системе

Взаимодействия ион-молекулярные

Взаимодействующие системы

Дисперсные системы

Система молекулярно-дисперсные



© 2025 chem21.info Реклама на сайте