Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление газификации

    Метод газификации под давлением (Лурги) [c.77]

    Газификация жидких и твердых топлив. Газификация жидких тяжелых остатков нефти осуществляется в свободном объеме н на катализаторе при атмосферном или повышенном давлениях. Газификацию мазута проводят парокислородной смесью в присутствии жидкого катализатора — раствора солей кальция (рис. 1.11). Подогретый в подогревателе 1 до температуры НО—120°С мазут направляется в фильтр 2 для очистки от твердых примесей и подается в емкость 3. Из емкости 3 насосом 4 мазут подается в форсунки 5 газогенератора 6-, сюда же поступают кислород и водяной пар. Процесс газификации в присутствии катализатора осуществляется при температуре около 1200 °С. [c.33]


    Для получения синтез-газа из угля требуется большее число стадий, так как в сыром газе больше нежелательных побочных продуктов, в том числе соединений серы, смолы и фенолов. На рис. 5 показана схема получения синтез-газа газификацией угля под давлением методом Лурги . После газификации угля с помощью кислорода и пара под давлением около 30 атм осуществляется первая стадия его очистки для удаления таких летучих компонентов, как смола, масла и фенолы. После этого следует стадия тонкой очистки с использованием холодного метанола, как это описано в разд. 1У.В. [c.224]

    Дальнейшее повышение давления газификации представляет определенный интерес, так как уже при давлении 100 ат для газификации не потребуется кислорода и, подавая в генератор только пар, будут получать почти чистый метан. [c.30]

    Показатели Давление газификации, ат  [c.105]

    ГАЗИФИКАЦИЯ ПОД ДАВЛЕНИЕМ — ГАЗИФИКАЦИЯ ТВЕРДЫХ ТОПЛИВ [c.366]

    В случае синтеза при среднем давлении для получения синтез-газа особенно предпочтителен метод газификации юод давлением, разработанный фирмой Лурги. Газификация ведется также смесью кислорода и водяного пара, причем на 1 нм смеси СО и Н2 расходуется [c.77]

    В последующие годы были разработаны новые способы газификации твердого топлива в пылевидном и во взвешенном состояниях как при атмосферном, так и при повышенном давлении. Газификации могут подвергаться, кроме кокса, антрацит, бурые угли, сланцы, а также мазут и нефть. [c.14]

    Основное назначение процесса — удаление асфальтенов из гудрона перед его дальнейшей углубленной переработкой, в частности гидрогенизационной. Нефтяной асфальтит может быть подвергнут газификации в схемах безостаточной переработки нефтяного сырья его используют в производстве нефтяных битумов и большого ассортимента различных нефтехимических продуктов, а также взамен природного асфальтита в производстве различных сплавов и в качестве теплогидроизоляционного материала. При температурах 140—150 С и давлении 2,2—2,5 МПа при обработке остаточного сырья легкой бензиновой фракцией (технической пентановой фракцией) в колонном экстракционном аппарате — экстракторе — образуются два слоя раствор деасфальтизата (около 70 % масс, бензиновой фракции и 30 % масс, деасфальтизата), который отводится с верха экстрактора, и раствор асфальтита (около 37 % масс, растворителя и 63 % масс, асфальтита), который откачивается из экстрактора снизу. Экстрактор снабжен тарелками из просечно-вытяжного листа. Кратность растворителя к сырью (по объему) составляет примерно 3,5 1 при выходе асфальтита в количестве 12—15 % (масс.) на гудрон [12]. [c.69]


    По сравнению с газификацией твердого топлива процессы газификации жидкого топлива более экономичны. Установки, работающие на жидком топливе, проще и компактнее, их можно легко автоматизировать кроме того, отпадает необходимость в золоудалении и значительно упрощается подготовка топлива. Наибольший интерес представляют агрегаты для газификации жидкого топлива под повышенным давлением, использование которых позволило снизить расход сырья и энергии и сократить капиталовложения по сравнению с этими показателями газификации под атмосферным давлением. Газификация жидкого топлива имеет перспективы развития в районах и странах, бедных горючими газами, так как производство аммиака из природного газа все же экономичнее, чем из жидкого топлива. [c.80]

    Для различных технологических условий на разных стадиях газификации обычно оправдывает себя ступенчатая обработка. Например, на какой-то стадии может возникнуть необходимость повысить давление или изменить температурный режим. Выше уже говорилось о роли давления в реакциях, представленных в табл. 23. На температурных изменениях при постоянном, давлении следует остановиться более подробно. [c.90]

    После удаления СО2 и H2S в газе остается еще значительное количество окиси углерода (3—5 объемн. %). При проведении процесса кислородной конверсии под давлением выше 55 ат невозможно применение низкотемпературной конверсии окиси углерода вследствие конденсации водяного пара. В этом случае для удаления оставшейся окиси углерода применяют промывку под давлением медноаммиачным раствором или жидким азотом. При давлении газификации ниже 50 ат для удаления окиси углерода применяют вторую низкотемпературную ступень конверсии с последующей метанизацией остатков СО. [c.242]

    Коксование, газификация, сухая перегонка, гидрирование при высоком давлении. [c.270]

    Высокое давление тройной точки (0,52 МПа) исключает возможность хранения СО2 в жидком состоянии при атмосферном давлении даже при низкой температуре. Хранение в твердом состоянии, вероятно, неприемлемо из-за эксплуатационных трудностей, а также вследствие высоких удельных энергетических и топливных затрат на получение холода низкого уровня (до минус 78 °С), а также на последующую газификацию или сжижение твердой фазы. [c.181]

    Повышение давления мало сказывается на равновесности высокотемпературного риформинга, которое сдвигается влево. Однако обычно газификацию ведут под высоким давлением, тем самым снижая габаритные размеры газогенератора и получая генераторный газ под давлением. [c.93]

    В табл. 8 приведены равновесные значения конверсии монооксида и диоксида углерода, достигаемые при определенных давлении и температуре. Для экспериментов был взят газ с объемным содержанием 4% СОг, 26% СО, 60% Нг, 10% инертных газов, полученный газификацией угля и очищенный. [c.217]

    Газификация твердых топлив. Получение синтез-газа можно осуществлять газификацией кускового (брикетированного), мел-.козернистого и пылевидного топлива. Известны следующие процессы газификации пылевидных топлив, осуществляемые но различным технологическим схемам газификация под давлением, одноступенчатая и многоступенчатая газификация в исевдоожи-женном слое, газификация с применением инертного твердого теплоносителя, газификация с применением золы в качестве теплоносителя, газификация с применением кислорода, газификация в пульсирующей среде и др. Однако несмотря на многочисленность разработанных вариантов и схем процессов доля использования твердых топлив в производстве синтез-газа для выработки метанола и аммиака не превышает в капиталистических странах 3% [6]. Такое положение объясняется, с одной стороны, громоздкостью технологического оформления, сложностью оборудования, высокими капитальными и текущими затратами и, с другой стороны, низким качеством получающегося синтез-газа, загрязненного серосодержащими соединениями. [c.11]

    Прямое фракционирование сырой нефти приводит к образованию ряда дистиллятов с обычными пределами кипения, независимо от места ее добычи, хотя относительный выход тех или иных нефтепродуктов зависит от конкретного вида нефти. Эти нефтепродукты можно использовать для различных целей, в том числе для химической конверсии и газификации или подвергнуть дальнейшей обработке. Так, при отделении большинства легко-испаряющихся фракций (точка кипения ниже 35°С) при атмосферном давлении получают сжиженный нефтяной газ следующая, более тяжелая фракция (точка кипения 35—200°С) является основой производства бензина, однако и ее можно разделить на два вида лигроина, используемого в качестве сырья в химической промышленности и газификации. Керосин для авиационных турбин и бытовых фитильных горелок кипит при 150—ЗОО С температура кипения газойля для быстроходных дизелей и бытовых отопительных систем изменяется в диапазоне 175—ЗбО С. Любой продукт с более высокой точкой кипения после перегонки используется в качестве топлива для тихоходных судовых дизелей и горелок с распылением и как основа смазочных масел, а без перегонки — как остаточное топливо для промышленных целей и выработки энергии. В прил. 2 дана упрощенная технологическая схема типичного интегрального нефтеперерабатывающего завода, который включает установки перегонки, риформинга легких фракций нефти и крекинга, что способствует получению сырья для производства ЗПГ. [c.73]


    Принципиальная технологическая схема процесса Лурги [12], основанная на парокислородной газификации под давлением отсортированного по размерам кускового угля и механическом принципе перемешивания слоя топлива, показана ка рис. 18. [c.155]

    Одновременно с процессом Лурги были разработаны другие, технологически отличающиеся от него процессы газификации каменного угля, которые вполне подготовлены к внедрению их в промышленных масштабах. К ним прежде всего необходимо отнести процесс, осуществляемый в газогенераторе Винклера, который, по сути дела, является одной из первых попыток промышленного внедрения технологии газификации в псевдоожиженном (кипящем) слое [1]. Мелкокусковой уголь или кокс (средний диаметр 0,8 мм) газифицируется при атмосферном давлении парокислородным дутьем, а зола топлива выводится из реакционной зоны потоком газа. Процесс недостаточно эффективен главным образом из-за неполной сепарации и склонности к большим потерям топлива. Поскольку процесс осуществляется при атмосферном давлении, у него ограничена удельная производительность по газу. [c.160]

    При этом выход побочных продуктов непрерывно возрастал от 5,5%, для легких лигроинов до 8,5 и 15% соответственно для тяжелых лигроинов и керосина. Основная трудность ведения процесса при переработке высококипящих материалов заключается в невозможности полного испарения сырья, особенно при повышенном давлении, необходимом для газификации высококипящих жидких углеводородов. Если эти углеводороды остаются в жидком состоянии при температуре впуска (450°С), будет происходить интенсивный крекинг по всему объему. Чтобы избежать этого, водород иногда нагревают отдельно до температуры, значительно превышающей температуру жидкого сырья. [c.121]

    Технология процесса газификации сырья осуществляется в полном соответствии с процессом, описанным в предыдущей главе. Кислород для этой цели получают либо со вспомогательной установки разделения воздуха, либо со стороны кислород, жидкие нефтепродукты и пар вдувают под давлением в реактор-газификатор, футерованный огнеупором, а газы — продукты реакции, быстро охлаждают. Для охлаждения применяют различные способы, например непосредственное охлаждение водой или съем тепла в специально разработанных котлах-утилизаторах. При этом следует иметь в виду, что газ, охлаждаемый в скрубберах, необходимо направлять для конверсии окиси углерода в каталитический реактор. [c.144]

    В газогенераторах Лурги в среднем перерабатывается около 1 т угля в 1 ч на 1 колосниковой решетки (в зависимости от сорта угля и давления энергоносителей возможны колебания от 0,5 до 1,5 т/(м -ч). При коэффициенте полезного действия процесса газификации, равном 80%, это соответствует производству 0,283 млн. м /сут ЗПГ на один газогенератор Лурги диаметром 3 м. Другими словами, типовой американский завод производительностью до 3,54 млн. м /сут должен иметь в своем составе около 15—16 газогенераторов (минимум— 13 газогенераторов). Возможность строительства установок с внутренним диаметрам более 3 м, разумеется, ке исключается. Однако в этом случае маловероятна разработка высокоэффективных вращающихся колосниковых решеток и устройств таких размеров для перемешивания. Помимо этого подобные газогенераторы невоз.можно изготовить силами самих предприятий и поэтому будет необходимо организовывать их специализированное производство. К тому же нерегулярный режим получения пара и катализация процесса, имеющие место в современных конструкциях, будут еще более характерны для газогенераторов большего диаметра. [c.159]

    Наводороженный газ получают под давлением, поэтому при входе его в нижний из трех слоев угля декомпрессии не требуется. Основной причиной проведения реакций газификации в три стадии является обеспечение в этом случае более благоприятных условий для получения равновесного метана. Темпе- [c.162]

    Проводимые в настоящее время работы по совершенствованию автотермических процессов направлены в основном на повышение давления газификации, увеличение единичной мощности и термического к. п. д. реакторов, максимальное сокращение образования побочных продуктов. В автотермических процессах газификации до 30% угля расходуется не на образование газа, а на получение необходимого тепла. Это отрицательно сказывается на экономике процессов, особенно при высокой стоимости добычи угля. Поэтому значительное внимание уделяется в последнее время разработке схем аллотер-мической газификации твердого топлива с использованием тепла, получаемого от расплавов металлов или от высокотемпературных ядерных реакторов. [c.97]

    Принцип работы и устройство газификаторов. Газификатор — аппарат, в котором происходит поцесс превращения криогенной жидкости в газ. Различают два типа газификаторов высокого и низкого давления. Газификация криогенной жидкости в газ высокого давления производится с помощью насосов, в газ низкого давления — без насоса. Холодный газификатор (рис. 175) представляет собой агрегат, состоящий из цилиндрического вертикального резервуара 1 с порошкововакуумной изоляцией, испарителя 2 для подъема давления в резервуаре, испарителя 3 для газификации выдаваемой жидкости и шкафа управления 4, смонтированного на резервуаре. Испарители, изготовленные из листовых алюминиевых панелей с внутренними каналами, используют только теплоту окружающего воздуха. Конструкция испарителей обеспечивает самопроизвольное удаление снеговой шубы. [c.207]

    Bтop я задача, которую приходится решать при разработке технологической схемы, — выбор давления, при котором должна происхйдить регазификация СПГ. Здесь возможны два варианта газификация СПГ либо при низком давлении с последующим сжатием в компрессоре при температуре окружающей среды, либо под высоким или повышенным давлением путем сжатия СПГ асосом. Так как температура конденсации азота ниже температуры кипения СПГ при одном и том же давлении, то для обеспечения конденсации N2 необходимо иметь более высокое давление по сравнению с давлением кипящего метана. Отношение между давлением газификации СПГ и требуемым давлением для промежуточного теплоносителя (в данном случае азота) может быть определено по рис. 68, из которого видно, что при испарении жидкого метана под давлением несколько выше атмосферного (например, 0,12 МПа) давление циркуляционного потока при разности температур между потоками в конденсаторе-испарителе около 5 К должно составлять 2,2—2,5 МПа. Проведение регазификации при более высоком давлении повлечет за собой повышение температуры кипения метана и, следовательно, вызовет необходимость повышения давления циркуляционного азота. Иногда решающим фактором в выборе давления являются условия, при которых используется СПГ после газификации. [c.196]

    В( роятность выделения этого углерода возрастает при увеличении числа углеродных атомов (п) углеводорода, повышении давления и y [eньшeнии отношения При этом наиболее опасен температурный режим 500 — 750 °С. При температурах свыше 750 °С угле — о( разование менее вероятно в результате усиления реакций газификации образовавшегося углерода водяным паром и диокси — дс м углерода. В этой связи промышленные процессы ПКК углево — дс родов проводят при двух — и более кратном избытке водяного пара п )отив стехиометрически необходимого соотношения. [c.158]

    VI-5. Льюис, Джилиленд и Пекстон получили следующие данные о влиянии парциального давления кислорода на скорость газификации кокса при SIO  [c.198]

    Совершенно новым направлением применения рассматриваемога процесса является получение водородсодержащего газа из бензина-при низких температурах. Понижение температуры до 260° С, снижение давления до близкого к атмосферному и уменьшение степени газификации жидкого сырья приводят к тому, что процесс низкотемпературной конверсии бензина оказывается ориентированным, в основном, на получение водорода. Побочно получающая-ся двуокись углерода может быть легко удалена обычными способами. Повышение температуры процесса приводит к увеличению содержания окиси углерода в газе конверсии бензина. При пониженных температурах этим способом можно получить газ, практически не содержащий окиси углерода (см. табл. 25). [c.41]

    Дйиа-крекиш позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием метгллов, азота и серы. Процесс проводится в трехсекционном реакторе с псевдоожиженным слоем и внутренней рециркуляцией инертного микросфе-рического адсорбента. В верхней секции реактора при температуре примерно 540 С и давлении около 2,8 МПа осуществляется собственно гидропиролиз тяжелого сырья. Носитель с осажденным коксом через зону отпаривания поступает в нижнюю секцию реактора, где проводится газификация кокса парокислородной смесью при температуре около 1000 С с образованием водородсодержащего газа (смесь СО и Нг). Последний через отпарную секцию поступает в верхний слой теплоносителя, обеспечивая необходимую для протекания реакций гидропиролиза (гидрокрекинга) концентрацию водорода. Таким образом, в данном процессе гидротермолиз сырья осуществляется без подачи водорода извне. Регенерированный теплоноситель-адсорбент далее пневмотранспортом подается в верхнюю секцию реактора. [c.80]

    Хотя иногда равновесность реакции окисления достигается с помощью катализатора, газификация на кислородном ли воздушном дутье обычно осуществляется в некаталитичвских условиях. Здесь рабочая температура процесса должна быть высокой, чтобы вместо окисления не произошло термического крекинга, а за счет давления, хотя и не юбязательного для протекания самого лроцеоса, можно значительно уменьшить габаритные размеры оборудования. [c.95]

    Значительным преимуществом газификации под давлением на воздушном или кислородном дутье является выход генераторного газа под давлением. Это особенно существенно для газовых турбин и при транспортировке газа на большие расстояния. Так как про1мышленный кислород обычно поставляется под давлением, а повышение давления жидкого твердого сырья требует небольших энергозатрат, газификация с частичным окислением обычно ведется при давлениях до 80 клс/см , причем его максимальная величина определяется последующими этапами обработки газа. При столь высоком давлении выявляется еще одно преимущество установок ЗПГ — образование большего количества метана з окислов углерода и водорода (см. реакции 5 и 7 в табл. 23). [c.95]

    Легко прийти к выводу о том, что при газификации сырой нефти и остаточного топлива в реакторах ГПЖС, подобно процессу газификации легкого сырья в установках ГРГ, наряду с газом получают значительные количества жидких ароматических углеводородов и некоторое количество углерода, независимо от степени подогрева сырья и газа, удельного расхода сырья на производство 1 м газа, высокого давления водорода и рабо-бочей температуры, не превышающей 750°С. [c.129]

    Попытки модернизировать процесс тазификации твердого топлива не прекращаются до настоящего времени, уже имеются новые процессы газификации, которые разработаны в США (см. гл. 9, посвященную производству ЗПГ из угля). В этом разделе авторы хотели бы обратить внимание только на тот факт, что имеются самые разнообразные процессы газификации угля обработкой под давлением паром и кислородом, такие, как процесс Федерального Горного бюро, процессы ИГТ ХАЙГАЗ , БИ-ГАЗ и старейший процесс Лурги . [c.134]

    Мы не намереваемся подробно обсуждать многообразие процессов, большинство из которых теперь абсолютно устарело. Особенно это касается тех процессов, которые были разработаны в период между двумя войнами для газификации угля и кокса, так как основная цель большинства из них —получение искусственного газа либо для производства аммиака или метанола, либо для производства светильного J(гopoд кoгp) газа средней теплоты сгорания, подаваемого домовладельцам или мелким предприятиям. Существует, однако, заслуживающее внимания мнение о том, что большинству из этих процессов газификации присущи общие технологические особенности, такие, как низкое или даже атмосферное рабочее давление, тенденция к образованию легко иснаряющихся жидкостей и даже твердых побочных продуктов, что в свою очередь приводило к получению газа, содержащего значительные количества примесей, таких, как сернистые соединения, окислы азота, непредельные углеводороды, иногда называемые осветителями и др. Отличительными чертами ранних схем газификации являлись также их исключительная сложность и неэффективность оборудования для переработки угля, кокса и золы. [c.152]

    Давление во (Всех системах этого процесса ниже, чем в ХАЙ-ГАЗ-процессе и других процессах газификации в регенераторе и реакторе-га-эификаторе оно равно 20 кгс/см2 (2 ГПа) несколько ниже давление в камере удаления летучих составляющих угля, однако оно достаточно вы- [c.165]


Смотреть страницы где упоминается термин Давление газификации: [c.90]    [c.402]    [c.77]    [c.174]    [c.245]    [c.114]    [c.272]    [c.134]    [c.162]    [c.162]    [c.164]   
Справочник азотчика Том 1 (1967) -- [ c.163 ]

Справочник азотчика Т 1 (1967) -- [ c.163 ]




ПОИСК







© 2024 chem21.info Реклама на сайте