Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография нефти

    ХРОМАТОГРАФИЯ НЕФТЕЙ И НЕФТЕПРОДУКТОВ Хроматография бензинов [c.76]

    В табл. 46 приводятся результаты хроматографического разделения восточно-техасской нефти с использованием указанных растворителей [86]. Хроматография нефти проводилась па активированной окиси алюминия с зернами 80—200 меш. На один объем адсорбента бралось 0,15 объема нефти. [c.116]


    ХРОМАТОГРАФИЯ НЕФТЕЙ И НЕФТЕПРОДУКТОВ [c.54]

    В заключение следует упомянуть различные типы хроматографических процессов, протекающих в природных условиях [9]. В качестве примеров можно назвать процессы фронтальной и флюидной хроматографии нефти и природного газа в слоях породы, вмещающих месторождения. [c.369]

    Вигдергауз М. С. Газовая хроматография как метод исследования нефтей. [c.95]

    Качество продуктов контролируется и регулируется анализаторами качества, которые включены в систему регулирования. Назначение анализаторов качества автоматическое определение вязкости, температуры вспышки, начала кипения светлых нефтепродуктов, определение содержания соли в воде и воды в нефти, определение фракционного состава, плотности. Существуют также следующие приборы хроматограф промышленный автоматический, газоанализатор оптико-акустический для автоматического определения содержания (в %) окиси углерода, газоанализатор магнитно-электрический для автоматического определения содержания (в %) кислорода прибор для определения вязкости нефтепродукта на потоке. [c.222]

    При разработке новых сортов масел, соотношение соединений нефти и другие химические показатели определяются при помощи инфракрасной (ИК) спектроскопии, хроматографии и других методов анализа. [c.41]

    На установках первичной переработки нефти достигнута высокая степень автоматизации. Так, на заводских установках используют автоматические анализаторы качества ( на потоке ), определяющие содержание воды и солей в нефти, температуру вспышки авиационного керосина, дизельного топлива, масляных дистиллятов, температуру выкипания 90 % (масс.) пробы светлого нефтепродукта, вязкость масляных фракций, содержание продукта в сточных водах. Некоторые из анализаторов качества включаются в схемы автоматического регулирования. Например, подача водяного пара в низ отпарной колонны автоматически корректируется по температуре вспышки дизельного топлива, определяемой с помощью автоматического анализатора температуры вспышки. Для автоматического непрерывного определения и регистрации состава газовых потоков применяют хроматографы. [c.12]


    Исследование газов, получающихся в различных процессах переработки нефти, может быть проведено на хроматографе типа ХЛ-3 в соответствии с методикой, изложенной в ГОСТ 10679—63. [c.253]

    Генетическая классификация нефтей должна включать генетические, "кодовые", признаки, унаследованные от ОВ материнских пород. Есть два подхода к этому вопросу. Один нашел отражение в работах Ал. А. Петрова [20, 21], А.Э. Конторовича и других геохимиков, которые разделили нефти на два типа или категории нефти, образовавшиеся из морских отложений и из органической массы неморского генезиса. Ал. А. Петров подразделяет нефти на категории А и Б. В нефтях категории А, судя по данным газожидкостной хроматографии, имеется определенное количество нормальных и изопреноидных алканов, а в нефтях категории Б — пики н-алканов отсутствуют. В свою очередь, в зависимости от относительной концентрации нормальных и изопреноидных алканов в нефтях категории А и от наличия или отсутствия изопреноидных алканов в нефтях категории Б нефти разделяются на два типа (в каждой категории) А, А , Б , Б. А.Э. Конторович [10] выделяет четыре основных типа нефтей - А, В, С и О. [c.9]

    Химическая типизация нефтей, разработанная Ал. А. Петровым в 1974 г., основана на данных газожидкостной хроматографии. В основу этой типизации им положено распределение нормальных и изопреноидных алканов во фракции 200—430 °С. Нефти подразделяются на две категории (А и Б), в каждой из которых выделяется по два типа. Как видно из табл. 5, четкие количественные градации для выделения типов нефтей отсутствуют, интервалы величин между типами перекрываются. Разделение нефтей на четыре типа привело к тому, что к каждому типу, в особенности к типу А, имеющему наибольшее распространение, относятся нефти очень неоднородные и характеризующиеся, как указывает Ал. А. Петров, большой вариацией в свойствах и составе. [c.18]

    Метод идентификации состава нефтяных фракций с помощью жидкостно-адсорбционной хроматографии [2 2] ис позволяет проводить четкое деление углеводородов и сернистых соединений нефти, выкипающих выше 300"С, по числу ароматических колец. Поэтому фракции, выделяемые методами адсорбционной хроматографии, должны более глубоко исследоваться по составу. Сочетание этого метода со спектроскопией УФ-, ЯМР-, масс-спектрометрией может [c.34]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    Дистилляты из арланской нефти, выкипающие в пределах 28— 150, 150—180, 180—200, 200—300 и 300—350° С, были исследованы более детально с применением методов газо-жидкостной хроматографии, дегидрогенизационного катализа и спектральных анализов. [c.4]

    Модификация поверхности адсорбента ионами металла, обладающего высокими комплексообразующими свойствами, позволяет удерживать ГАС в слое благодаря образованию лабильных связей в координационной сфере иона-комплексообразователя, т. е. реализовать координационный или лигандно-обменный механизм сорбции. В качестве таких связанных с поверхностью носителя акцепторов чаще других используются ионы Ag+, Hg++, u++, Ni++, Fe + [17, 118—120], с помощью которых удается селективно извлекать из нефти и нефтяных концентратов и фракционировать многие классы ГАС. Особым достоинством координационной хроматографии является возможность эффективного разделения соединений, близких по физико-химическим свойствам, в том числе геометрических и да- [c.16]

    Хроматография нефти на модифицированном силикагеле приводит к выделению значительной доли соединений азота (90 %), серы (80 %) и кислородсодер жащих соединений нейтрального характера в продуктах, полученных элюированием гексана и толуола (табл. 2). [c.174]

    Судя по измененгю показателя преломления микрофракций углеводородов тяжелой части в процессе десорбции при элюентной хроматографии, нефти верхних (17-го и 18-го) пластов в отличие от нефтей нижних (27-го и 28-го) пластов Восточно-Эхабинского месторождения подверглись действию окислительного фактора. [c.203]

    Наилучп1ие результаты при хроматографии нефти получаются при применении метода промывания с использованием элюептов с возрастающей десорбционной способностью, например, и-пентана, четыреххлористого углерода, бензола и спирто-бензольной смеси. [c.116]


    Шлезингер использовала люминесцентный акалнз для исследования хроматограмм ряда эфирных вытяжек из лекарственных растений ревеня, крушины, костера, алскслндри1 ского листа, щавеля, которые хроматографировались на окиси магния и изучались при освеп1,ении кварцевой лампой. Ф. М. Эфендиев и С. А. Зак предложили люминесцентно-хроматографический метод для исследования нефтяных масел на гумбрине. П. Ф. Андреев при люминесцентной хроматографии нефтей и битумов растворял их в легком бензине, адсорбируя на техническом силикагеле. [c.93]

    Адсорбционную колонну для разделения нефтяных углеводородов впервые применил Дэй [5]. Он пропускал нефть снизу вверх через колонну с фуллеровой землей и показал, что непредельные и ароматические углеводороды оставались преимущественно в нижней части этой колонны. Методика Дэя была улучшена Джилпином и Крэмом [13], которые пропускали нефть через колонну длиной 1,52 м, заполненную фуллеровой землей. В 1906 г. М. С. Цвет предложил называть метод, в котором для разделения веществ используется адсорбционная колонна, хроматографическим анализом, так как первоначально этот метод использовался для разделения окрашенных пигментов. В более поздних работах термин хроматографический анализ или хроматография стал применяться для обозначения методов адсорбционного разделения как бесцветных, так и окрашенных соединений, В США интерес к использованию адсорбции на силикагеле для разделения и анализа нефтяных фракций усилился главным образом в результате работы Майра и сотрудников [29, 30, 32] по [c.136]

    С никоторых пор стал возможен анализ ароматических углеводородов Се, С, и Сд в бензиновых фракциях. Однако для болео высококипящих фракций в настоящее время анализ на индивидуальные компоненты невозможен вследствие бо.11ьшого числа изомеров в данных пределах ки- пения и близости температур кипения углеводородов различных классов. При разработке процессов переработки нефти чрезвычайно важно знать состав высококипящих фракций, например исходных и конечных фракций каталитического крекинга. Особенно важно знать содержание различных классов ароматических углеводородов. Хроматография является превосходным методом их количественного разделения. Типы ароматических соединений во фракции можно определить по спектрам поглощения в ультра- [c.286]

    В работе Горного бюро [11 использовались ультрафиолетовые спектры продуктов, полученных при помощи хроматографии, для определения ароматических углеводородов во фракциях 200—260° сырой нефти. Типичные соединения, которые были определены, включали тетралин, нафталин, 1- и 2-метилнафталины, 2-этилнафталин, дифенил и 2,6-, 1,6- и 1,7-диметилнафталины. Кроме того, было установлено присутствие многих других соединений. Многие из них, вероятно, могли быть определены количественно, если и не И1ЩИ ни дуально, то по классам. Этот метод исследования требует регистрирующего прибора, если работа должна быть выполнена в течение достаточно короткого времени. [c.286]

    Хроматография выполняется в простой вертикальной трубке, в которую заранее помещается слой адсорбента. Образец вводится сверху и вымывается подходящим растворителем. Вследствие различной адсорбируемости компо-невтов или групп колшснентов нефти различна и скорость переноса, что и приводит к последовательному вымьранию разделяемых частей. Правильный выбор типа и количества адсорбента, а также промывающей жидкости обеспечивает четкое разделение. [c.389]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Используя методы адсорбционной хроматографии и комплексообразования с карбамидом 50-градусных дистиллятов трех туркменских нефтей (месторождений Бурун, Овал-Товал и Котур-Тепе) с последующим разделением изопарафино-нафтеновых углеводородов методом термической диффузии [ 5, 6 , изопарафиновые углеводороды отделили от нафтеновых, а последние разделили на группы, различающиеся по числу колец в молекуле. На примере одной из фракций бурунскюй нефти показано, что в молекулах нафтеновых углеводородов содержится от 1 до 6 колец. [c.9]

    За последние годы возросло использование оп.ектральных и спектрометрических методов в сочетании с хроматографией, а иногда и термодиффузией для исследования тяжелых нефтяных фракций. Например, в работе [7] при помощи спектральных методов изучен структурно-групповой состав ароматических углеводородов жирновской и коробковской нефтей (табл. II). [c.18]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Так как высокомолекулярные углеводороды образуют комплексы при П01вышенных температурах, а для вовлечения в комплекс углеводородов меньшей молекулярной массы процесс ведут при комнатной и даже более низких температурах, появляется возможность селективного извлечения, компле1Ксообразующих компонентов из нефтяного сырья. С помощью кристаллического карбамида при понижении температуры от 55 до 20 °С с использованием в качестве активатора хлористого метилена [70] было проведено фракциониравание парафино-нафтеновых углеводородов, выделенных из сырой долинской нефти смесью карбамида и тиокарбамида (табл. 36). Выделенные (фракции, как следует из приведенных данных, отличаются по составу и структуре углеводородов. Методом газо-жидкостной хроматографии совместно с ИК-спектроскопией установлен качественный и количественный состав выделенных углеводородов показано, что с понижением темпер-атуры обработки уменьшаются молекулярная масса и температура плавления комплексообразующих углеводородов. Дан- [c.231]

    Газовая хроматография по праву считается самым эффективным и универсальным способом фракционирования органических соединений. Подобно другим микрохроматографическим методам, она обеспечивает не только четкое разделение, но и групповую, а часто и индивидуальную идентификацию компонентов смеси. Описанию различных аспектов газовой хроматографии и ее результатов посвящена обпшрнейшая литература [159—162 и др.], поэтому мы ограничимся лишь упоминанием некоторых воа юж-ностей метода, оказавших наибольшее влияние на исследования ГАС из нефтей и других природных объектов. [c.21]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    N-фopмилпpoизвoдныe выделялись из смеси продуктов катионным обменом на КУ-1, а восстановленные й непрореагировавшие вещества — адсорбционной хроматографией на силикагеле. По этой схеме определен состав оснований из ряда нефтей [186]. Однако полученные данные скорее всего не отражают истинных соотношений между типами, так как трициклическая фракция неф- [c.23]


Библиография для Хроматография нефти: [c.126]   
Смотреть страницы где упоминается термин Хроматография нефти: [c.115]    [c.120]    [c.203]    [c.4]    [c.32]    [c.33]    [c.394]    [c.376]    [c.11]    [c.283]    [c.337]    [c.9]    [c.15]    [c.14]    [c.19]    [c.23]   
Смотреть главы в:

Хроматография в нефтяной и нефтехимической промышленности -> Хроматография нефти




ПОИСК







© 2025 chem21.info Реклама на сайте