Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование следов элементов в растворах химическими методами

    Концентрирование следов элементов в растворах химическими методами [1—4] [c.55]

    Концентрирование следов элементов методом соосаждения основано на том, что микроколичества определяемого элемента захватываются осадком — коллектором (т. е. собирателем), образующимся в процессе осаждения из предварительно добавленных реактивов. При этом для осаждения обычно применяют такой реактив, который образует с определяемым элементом малорастворимое соединение. Таким путем удается извлекать вещества, концентрация которых в растворе значительно меньше концентрации их насыщенного раствора, т. е. увлекать в осадок соединение с произведением концентрации ионов, меньшим величины произведения растворимости, и количества которых так малы, что если бы эти вещества и могли образовать в данных условиях собственный осадок, он потерялся бы на стенках сосуда. При соосаждении коллектор может вступать с осаждаемыми элементами в многообразные взаимодействия, начиная от образования химического соединения, например в результате ионного обмена между коллектором и осаждаемым веществом, и кончая процессами физического или просто механического характера. В ряде случаев соосаждение основано на образовании смешанных кристаллов. Например, при соосаждении ионов свинца с сульфатом стронция образуются смешанные кристаллы, так как сульфаты этих элементов изоморфны. Если прн соосаждении изоморфных веществ достигается равновесие, то можно определить коэффициент распределения К (стр. 295), который в данном случае может быть выражен отношением произведений растворимости двух компонентов  [c.346]


    Применение избирательных органических реагентов и использование избирательных схем фотометрического определения элементов (здесь мы рассматриваем в основном редкие элементы) составит серьезную конкуренцию физическим и физико-химическим методам, видимо, еще по крайней мере на протяжении 20—30 лет. Преимущества фотометрических методов, не требующих сложной аппаратуры, очевидны чувствительность методов достаточно высока (молярные коэффициенты погашения для лучших реагентов составляют 50—150 тыс.), что позволяет определять от 100 до 0,01 мкг абсолютных количеств вещества или до 10" % элемента в объекте без отделения основы, до 10 %—применяя простые, экспрессные схемы отделения, и до 10 —10 % —с предварительным концентрированием определяемого элемента. Сложные схемы подготовки анализируемого материала, не пригодные для использования их в автоматических анализаторах, вряд ли найдут широкое применение. При содержании элемента менее 10" % применение обычных фотометрических методов оправдывается только в редких случаях. Следует, однако, отметить, что здесь мы совершенно не рассматриваем другие химические методы анализа, которые также связаны с изменением окраски растворов (реакции, основанные на каталитических явлениях, ферментный анализ и др.), которые, возможно, существенно изменят наши представления о соотношении между собою различных видов анализа. [c.124]

    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]


    Урановые руды имеют различные химические составы от относительно простых урановых смоляных руд, которые сопровождаются десятком других минералов, до действительно сложных огнеупорных урансодержащих титанатов, ниобатов и танталатов, имеющих в своем составе редкие земли и многие другие металлы. Кроме того, урановые минералы сопровождаются примесями неопределенных органических соединений. Урановая смоляная руда из Рудных гор может содержать до 40 элементов, от которых надо отделять уран. Многие урановые месторождения имеют неустойчивый состав, он непрерывно изменяется по мере разработки рудного тела. Такие вариации стараются свести к минимуму применением специальных методов обработки. Большинство таких сугубо специализированных методов едва ли представляет интерес для настоящего обсуждения. Однако уместным будет отметить основные черты, общие для большинства операций. Все методы, которые заслуживают серьезного внимания, состоят из следующих этапов предварительного концентрирования руды выщелачивания для извлечения урана в водную фазу (этому этапу часто предшествует нагревание или обжиг для улучшения извлечения) и, наконец, выделения урана из растворов после обогащения путем осаждения, ионного обмена или экстракции растворителями. [c.125]

    Метод предварительного испарения использован для определения микропримесей металлов в оргапохлорсиланах (ОХС) [271]. Для очистки графитовых электродов их обычно обжигают в дуге и пропитывают раствором полистирола. Но при анализе ОХС полистирольное покрытие разрушается в процессе концентрирования из-за высокой химической активности ОХС. Авторы применили полиорганосилоксановый лак (ПЛ), обладающий более высокими химической и термической стабильностью. При использовании электродов без покрытия, покрытых полистиролом и ПЛ, соотношение сигналов равно примерно 1 2 3. Электроды с шейкой (диаметр канала 5 мм, глубина 4 мм) обжигают 10 с в дуге переменного тока силой 10 А, заполняют 1%-ным толуольным раствором ПЛ и сушат под ИК-лампой. Затем в канал электрода вводят 0,05 мл 2%-ного водного раствора хлорида натрия (буфер) и сушат под ИК-лампой. Подготовленные электроды на подставке помещают в бокс из органического стекла. Бокс продувают азотом 20—30 мии, затем электроды устанавливают в нагревателе и греют до заданной температуры (на 20—30 °С ниже, чем температура кипения основы, но не выше 150 °С). Для нагрева электродов использована нихромовая спираль в защитном (от коррозии) кожухе. В каждый электрод пипеткой постепенно вводят 1 мл образца. Эталоны готовят растворением хлоридов определяемых элементов в смеси (9 1) деионизированной воды и хлороводородной кислоты. В электроды вводят по 0,1 мл приготовленных эталонов и испаряют их при 70—80 °С. Для возбуждения спектров используют дугу переменного тока силой 10 А, экспозиция 40 с. Достигнуты следующие пределы обнаружения (в мкг/мл) медь и магний — 0,09, алюминий — 0,12, марганец— 0,41, железо и никель—1,5, кальций — 5,0. Эти же авторы при анализе полиорганосилоксановых лаков пробу смешивают с эталоном и толуолом в соотношении 7 1 2, вводят в канал электрода и испаряют под ИК-лампой [198]. [c.163]

    В случае диэлектрических и труднолетучих материалов (разд. 2.3) большие различия в методах анализа обусловлены составом анализируемых проб. Эффект влияния состава можно подавить спектроаналитическим способом, например смешиванием с подходящим посторонним веществом (разд. 4.4.3). В процессе обработки пробы некоторые труднолетучие компоненты могут превращаться в более летучие соединения (разд. 2.3.4). При этом имеет место также буферный эффект. Если не определяются следы элементов, то анализируемую пробу целесообразно разбавить в максимально возможной степени. Диэлектрические материалы можно сделать проводящими ток путем их смешивания со спектральным угольным порошком. Если анализируемая проба содержит основные элементы с развитыми спектрами, то даже при определении следов элементов часто можно с успехом применять метод фракционной дистилляции (разд. 4.4.4). Диэлектрические, трудно испаряемые или неоднородные материалы лучше анализировать методами растворов. При приготовлении растворов можно с успехом вводить операции химических превращений, концентрирования и т. д., особенно при определении следов элементов (разд. 2.4.2). [c.175]

    Анализ нроб второй группы часто предусматривает предварите пьное концентрирование, которое может включать унаривание, осаждение и отделение. В литературе описаны химические методы обогащения различной степени слолшости (в зависимости от решаемой задачи). Иногда перед измерением необходимо отделить определяемые элементы. В других случаях достаточно групповое отделение. Особенно эффективны способы выделения ионов из раствора при помощи ионообменных смол, которые часто используют в качестве коллекторов. Природа коллектора, на котором собираются небольшие количества определяемых элементов, имеет большое значение для уменьшения фона и для увеличения отношения сигнала к фону. Удобно применять коллектор в виде тонкой подложки, достаточно >кесткой, с плоской поверхностью для уменьшения рассеяния рентгеновского излучения. Кемпбелл и Тетчер [24] систематически исследовали ряд ионообменных смол и рабочие условия (природу смолы, толщину, продолжительность установления равновесия, помехи анализу). Они показали, что при должном использовании ионообменные мембраны позволяют получить высокую точность определения следов. Пример такого определения приведен в табл. 12. Общее число импульсов каждого измерения 25 600. В основном ошибка анализа (табл. 12) определяется статистической ошибкой счета импульсов. [c.234]


    Аналитическое разделение хроматографическим методом таких элементов, как кобальт, медь, железо, цинк, висмут, свинец и молибден, входящих в жаропрочные и другие сложные по химическому составу сплавы, основано на способности образования этими элементами в концентрированных солянокислых растворах отрицательных комплексных соединений следующего вида , (РеС] ) (СиС - (МпС18)2" 2п(С1з) (РЬС1в) " и т. п. Все эти комплексы имеют различную степень устойчивости в зависимости от кислотности раствора. [c.335]

    Этот недостающий элемент был открыт в 1898 г. М. Кюри и П. Кюри [С45, С48], в результате сделанного М. Кюри наблюдения, что радиоактивность урановой смолки (руда, содержащая окисел идОд, источник получения природных радиоактивных элементов) оказалась в 5 раз больще, чем следовало по содержанию в ней урана. М. Кюри и П. Кюри переработали большие количества урановой руды из Иоахимсталя. Сильно радиоактивное вещество было осаждено из растворов в соляной кислоте при использовании в качестве носителя сульфида висмута затем это вещество было сконцентрировано путем дробного гидролитического осаждения нитрата висмутила, причем процесс концентрирования контролировался по измерениям радиоактивности. Химические эксперименты, проведенные со следами вещества, показали, что это радиоактивное вещество является новым элементом, и М. Кюри дала ему название полоний (символ Ро) в честь своей родины Польши. Полоний был первым элементом, открытым с применением радиохимических методов, и проведенное Кюри исследование процесса выделения полония и радия из урановой руды положило начало новой науке— радиохимии. Огромные возможности этого нового метода исследования были показаны, в диссертации М. Кюри [С48], несомненно являющейся одной из наиболее замечательных работ, когда-либо представленных на соискание докторской степени. [c.159]

    Преимущества этого способа связаны со следующими его особенностями. Прежде всего раствор — это однородная система, весьма удобная для непосредственного анализа спектральным или любым другим аналитическим методом. При спектральном анализе растворов исключаются ошибки, связанные с влиянием структуры, молекулярного состава и неравномерным распределением элементов в пробе. Устраняется фракционирование, наблюдаемое почти всегда при анализе твердых проб. Значительно уменьшается, а во многих случаях полностью подавляется влияние третьих элементов и матрицы на результаты анализа. Весьма просто решается проблема приготовления эталонов-растворов для анализа самых разнообразных и сложных по химическому составу проб. Методы спектрального анализа растворов позволяют определять малые концентрации элементов в малых количествах растворов. Удачно сочетаются предварительная химическая обработка образцов и собственно спектральный анализ — ведь растворы получаются в результате хидш-ческой подготовки проб, в частности (в химико-спектральных методах), после концентрирования элементов экстракцией и другими способами. Это пример того, как в физических методах анализа в той или иной степени участвуют химические процессы (Алимарин [1]). [c.29]


Смотреть страницы где упоминается термин Концентрирование следов элементов в растворах химическими методами: [c.7]    [c.88]    [c.284]   
Смотреть главы в:

Эмиссионный спектральный анализ Том 1 -> Концентрирование следов элементов в растворах химическими методами




ПОИСК





Смотрите так же термины и статьи:

Концентрирование следов элементов химическими методами

Методы концентрирования

Растворы концентрированные

Химический ая ое раствора

Элемент химический

след

след н след



© 2025 chem21.info Реклама на сайте