Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижная выбор элюирующей силы

    Выбор элюирующей силы и селективности подвижной фазы. [c.35]

    Под типом хроматографической системы мы понимаем сочетание сорбента определенного химического класса с подвижной фазой, характеризующейся определенными признаками качественного состава величиной pH, наличием добавок кислого, щелочного или поверхностно-активного характера и т. д. Выбор типа системы — это первый этап разработки анализа, он предшествует выбору элюирующей силы и оптимизации селективности подвижной фазы. [c.273]


    ВЫБОР ЭЛЮИРУЮЩЕЙ СИЛЫ ПОДВИЖНОЙ ФАЗЫ В ОБРАЩЕННО-ФАЗОВОЙ ХРОМАТОГРАФИИ [c.274]

    Нормально-фазовая хроматография на силикагеле. Взаимосвязь между строением сорбатов и их величинами удерживания в этом режиме хроматографии весьма сложна, что не дает пока возможности создать универсальную, хотя бы и весьма приближенную, модель удерживания. Поэтому первоначальный выбор элюирующей силы подвижной фазы в значительной степени зависит от интуиции и опыта хроматографиста, от того, насколько хорошо изучен данный класс веществ. При наличии достаточной информации для прогнозирования состава подвижной фазы может быть использован метод сравнительных расчетов. Он позволяет оценить, медленнее или быстрее будет элюироваться данное вещество, чем соединение, принятое в качестве прототипа. Однако часто даже и столь ограниченная модель отсутствует, и в выборе элюирующей силы для первого, пробного разделения остается руководствоваться эмпирическими правилами. При этом целью такого пробного разделения является не столько получение хроматограммы, непосредственно пригодной для анализа, сколько общая оценка подвижности компонентов и получение исходной информации для оптимизации элюирующей силы. [c.308]

    Как показано в разделе 3.3, правильный выбор элюирующей силы подвижной фазы — необходимое, но не всегда достаточное условие успешного разделения. Для целенаправленного выбора или изменения состава подвижной фазы следует ввести рациональную классификацию растворителей по их селективности, как это сделано в отношении элюирующей силы. Основой такой классификации является различная способность растворителей вступать в межмолекулярные взаимодействия различных типов. Например, хлороформ, эфир и октиловый спирт имеют значения е° 0,40 0,38 и 0,50 соответственно. Следовательно, использовав эти растворители в качестве компонентов Бь Бг, Бз в бинарных смесях АБь АБг, АБз, можно получить в среднем удовлетворительные величины удерживания для некоторой группы сорбатов сходной химической природы. Однако при рассмотрении протонодонорных и протоноакцепторных свойств взятых трех растворителей ясно, что хлороформ, окта-нол и эфир должны по-разному взаимодействовать с различными сорбатами. Так, хлороформ, будучи донором протонов, особенно сильно должен способствовать элюированию акцепторов, например аминов. Наоборот, эфир, являющийся акцептором, будет сильнее ассоциироваться с донорами и ускорять именно их элюирование. [c.48]

    При выборе подвижной фазы, кроме соответствующей элюирующей силы, следует учитывать ряд других факторов летучесть, вязкость, расслаивание смеси растворителей растворимость образца действие на адсорбент. [c.132]


    При решении вопросов оптимизации часто возникает необходимость соотнесения силы бинарных систем, содержащих различные полярные растворители. Теоретические вопросы оценки силы и селективности бинарных элюентов детально рассмотрены в работах [183, 372, 374, 375], вопросы выбора подвижных фаз более сложного состава — в [153, 155, 184]. Для практической оценки элюирующей силы бинарных подвижных фаз могут оказаться полезными данные табл. 4. 29. [c.145]

    При хроматографии не слишком сложных смесей (до 4—6 компонентов) на высокоэффективных колонках выбор состава подвижной фазы очень часто заканчивается уже на стадии оптимизации элюирующей силы. Однако, если число определяемых веществ велико, нарастает вероятность того, что, несмотря на оптимальную элюирующую силу, пики отдельных соединений, окажутся неразделенными. В этой ситуации возникает необходимость оптимизации селективности, т. е. поиска таких компонентов В, которые в большей степени пригодны для разделения данной смеси. Теоретические основы селективности хроматографических систем по отношению к основным функциональным группам органических соединений пока совершенно не разработаны и прогресс здесь, по-вндимому, является перспективой отдаленного будущего. В настоящее время прогнозирование изменений селективности вследствие изменения качественного состава подвижной фазы может быть основано на ряде чисто качественных правил в режиме обращенно-фазовой хроматографии селективность разделения всех веществ, как правило, несколько возрастает с уменьшением элюирующей силы селективность системы по отношению к соединениям, различающимся структурными фрагментами, можно изменить, изменяя концентрации того компонента подвижной фазы, который в наибольшей степени способен к межмолекулярным взаимодействиям с одним из этих структурных фрагментов при хроматографии на силикагеле селективность повышается, если заменить один компонент В на другой, менее полярный, соответственно увеличив концентрацию последнего. [c.309]

    Для определения возможности применения уравнения (4.101) к подвижным фазам различной элюирующей силы были исследованы зависимости удерживания от концентрации полярного модификатора, аналогичные (4.52). На рис. 4.30 представлены примеры таких зависимостей для пары соединений, различающихся только одним структурным фрагментом. В рассматриваемом диапазоне С прямые Ig —Ig можно считать параллельными, и, следовательно, значения бIg/г ,j мало зависят от концентрации полярного модификатора, а зависят от типа модификатора. Сказанное иллюстрируют данные табл. 4.33, в которую сведены значения бIg г i,j для трех полярных растворителей. Анализ данных показывает различие в селективности используемых модификаторов. Это различие может стать основой для выбора модификатора, обеспечивающего наилучшее разделение [c.150]

    Для успеха разделения важен выбор подходящего элюента (растворителя). Он должен обладать сродством к растворенному красителю в такой степени, чтобы обеспечить достаточную подвижность по адсорбенту. Последняя является функцией элюирующей силы растворителя и зависит от его полярности. Эти зависимости впервые описаны для колоночной хроматографии в работах [25] и [26] и позднее применены для ТСХ в [2, 3] и [4]. Авторы расположили растворители по увеличению элюирующей силы (полярности) в элюотропный ряд . Наиболее важные растворители располагаются в следующей последовательности гексан, цикло-гексан, четыреххлористый углерод, бензол, хлорбензол, хлороформ, эфир, этилацетат, диоксан, пиридин, ацетон, этанол, метанол, вода. [c.43]

    Выбор состава подвижной фазы в ЖАХ основывается на эмпирическом подборе индивидуальных растворителей или их смесей, обладающих необходимой элюирующей способностью и обеспечивающих необходимую селективность при разделении компонентов смеси. На основании накопленного опыта элюенты для полярных сорбентов сопоставляют по элюирующей способности или хроматографической активности, располагая их в элюотропные ряды [62]. Элюирующая способность подвижной фазы характеризуется параметром д, величина которого зависит от силы взаимодействия молекул подвижной фазы с поверхностью адсорбента. Величина д° пропорциональна приведенной к единице площади поверхности (разности между энергиями взаимодействия молекул соответствующей подвижной фазы и молекул пентана), для которой ус- [c.198]

    При работе в ОФХ выбор элюирующей силы сводится к выбору концентрации органического комиоиеита подвижной фазы. В первичном случае может быть использовап подход па зависимости удерживания от Н. Если известна иринадлежность сорбата к онределен- [c.35]

    СИЛЫ. Правильный выбор элюирующей силы подвижной фазы является необходимым, но не всегда достаточным условием успешного разделения. Для целенаправленного выбора или изменения состава подвижной фазы необходимо ввести рациональную классификацию растворителей по их селективности, подобно тому, как это было сделано в отношении элюирующей силы. Основой всех способов классификации селективности является различная способность растворителей вступать в межмолекулярные взаимодействия различных типов, представление интегрального параметра элюирующей силы в виде суммы парциальных величин, характеризующих донорные, акцепторные, диполь-дипольные и другие свойства. Отослав заинтересованного читателя к первоисточникам [81—84], остановимся лишь на изображении свойств растворителей в виде треугольника селективности [85]. Вершинам его (рис. 111.32) отвечают гипотетические растворители, способные к межмолекулярным взаимодействиям только одного типа. Окружности в его пределах изображают области, соответствующие реально существующим раствор1 телям группы Б, подразделенным на восемь подгрупп селективности I — алифатические простые эфиры, амины II — алифатические [c.298]


    В подавляющем большинстве случаев подвижная фаза состоит из двух или более компонентов. При этом один компонент подвижной фазы в системе данного типа является сорбционно неактивным, т. е. сам по себе не в состоянии вызвать элюирование введенных в колонку анализируемых веществ (растворители А). Среди остальных компонентов подвижной фазы, помимо веществ специального назначения (соли буферов, ион-парные и другие модификаторы), присутствует растворитель сорбционно активный, который сам по себе способен приводить к быстрому элюированию компонентов пробы (растворители Б). Задача выбора элюирующей силы, приемлемой для данного сорбата, сводится к определению такого соотношения компонентов А и Б, которое обеспечивает необходимые для данной задачи величины удефживанця. В зависимости от типа хроматографической системы и характера сорбатов одно й то же соединение может выступать в качестве растворителя Л или Б. Так, при анализе малополярных сорбатов на силикагеле может оказаться полезной система растворителей гексан — хлороформ. В этом случае хлороформ выступает в роли растворителя Б, т. е. увеличение его концентрации вызывает уменьшение удерживания. При хроматографии на этом же сорбенте более полярных сорбатов часто используют систему растворителей хлороформ — метанол. Однако здесь компонентом Б, определяющим подвижность зоны, является метанол, в то время как хлороформ выступает в роли компонента А, т. е. инертного разбавителя подвижной фазы. [c.306]

    Хроматография на алкилсиликагелях. Выбор элюирующей силы в рамках данного типа хроматографической системы сводится к выбору концентрации органического компонента подвижной фазы. В зависимости от объема исходной информации об изучаемой смеси рациональными являются различные подходы к решению этой задачи. [c.306]

    В ТСХ, как и в других видах жидкостной хроматографии, одной из наиболее важных проблем является правильный выбор состава элюента. Следует руководствоваться элюотроппым рядом, в котором растворители расположены в порядке возрастания элюирующей силы, а также данными о свойствах разделяемых веществ и их способности взаимодействовать с подвижной и неподвижной фазами. В ТСХ выбор растворителя аналогичен выбору состава элюспта в адсорбционной хроматографии. Не следует выбирать многокомпонентную смесь, предпочтительней применение одно- нли двухкомионентпых элюентов для облегчения воспроизводимости условий ТСХ. [c.613]

    Некоторые растворители отличаются специфическим характером. Так, изопропиловый эфир проявляет сравнительно слабую элюирующую силу на окиси алюминия, а хлороформ на этом сорбенте относительно сильный элюент. Гексан, который менее полярен, чем хлороформ, вопреки простейшей логике является более слабым растворителем по отношению к модифицированной саже. Параметр е° — первая отправная точка при выборе состава подвижной фазы для адсорбционной хроматографии. Однако фактическое поведение сложных полифун-кциональных сорбатов может отличаться от ожидаемого на основании величин е°. Параметр е° зависит от выбора соединений, по которым он экспериментально определен, и поэтому всегда несет на себе печать селективности. В частности, по данным [94], сила растворителя зависит от класса сорбатов, по которым она найдена. Уже столь небольшой разницы в химической природе, как между метилбензолами и конденсированными ароматическими соединениями, оказывается достаточно, чтобы нарушить элюотронную последовательность. [c.45]

    При работе с образцами особо сложного состава (например, биологическими жидкостями) подготовка к анализу, как правило, многостадийная. Она может включать операции по осаждению, центрифугированию, фильтрованию, экстракции. Прп этом успех анализа в большей степени зависит от качества подготовки проб, чем от выбора условий хроматографирования. В последние. годы ряд фирм освоили выпуск пластмассовых хроматографических патронов для очистки и концентрирования образцов. Эти патроны (объем 1—20 мл) заполняются крупнозернистыми сорбентами, по химии поверхности совершенно аналогичными тем сорбентам, которые используются в ВЭЖХ. Принцип их использования следующий. Изучаемый объект растворяют в растворителе, обладающем незначительной элюирующей силон по отношению к анализируемым веществам. Полученный раствор пропускают через патрон, при этом более подвижные компоненты пробы в нем не задерживаются, а определяемые соединения накапливаются в верхней части слоя сорбента. Таким образом через патрон можно пропустить довольно большой объем образца, во много раз превышающий объем сорбента в нем. По окончании этой операции колонку промывают небольшим объемом растворителя, обладающего значительной элюирующей силой по отношению к определяемым соединениям (й яаЮ ). В результате такой процедуры из образца удаляются механические примеси, слабо и необратимо сорбирующиеся вещества. Получают фракцию небольшого объема, содержащую помимо определяемых соединений лишь фоновые компоненты с близкой хроматографической подвижностью. [c.212]

    Для выполнения транспортной функции в качестве подвижной фазы пригодны, вообще говоря, любые жидкости. Достаточно хорошо растворяющие компоненты пробы, и выбор таких жидкостей довольно велик. Одиако из приведенного примера ясно, что выбор растворителей подходящей элюирующей силы уже значительно меньше. К тому же, поиск их может осуществляться в основном методом проб и ошибок и, следовательно, весьма трудоемок. Многократное увеличение гибкости метода ВЭЖХ, обогащение его возможностей достигается за счет применения в качестве подвижных фаз смесей растворителей. Принцип составления таких смесей прост. Необходимо взять два, индивидуальных растворителя, один из которых имеет заведомо недостаточную элюирующую силу, а другой — заведомо избыточную. Из этих двух основных растворителей можно приготовить множество различных подвижных фаз. Часть из них обязательно будет обладать подходящей элюирующей силой. Например, из наших растворителей А, А2, Б, Б2 можно приготовить четыре бинарных смеси, обладающие подходящей элюирующей силой А Б, А2Б, А2Б2, А Б2. Соответствующие хроматограммы представлены на рис. III.31. Видно, что в среднем коэффициенты емкости компонентов Xi, Х2, Хз вполне приемлемы. [c.291]

    После того как выбран тип адсорбента и в соответствии с максимальной линейной емкостью стандартизована его активность, наиболее важньп методом корректировки Х°с цепью получения оптимальных значений Rp или является выбор подвижной фазы соответствующей элюирующей сипы. Влияние подвижной фазы на выражается членом ,входящим в уравнение (3.1), где 5° -энергия адсорбции вещества на адсорбент со стандартной активностью (а = 1), 4 - величина, пропорциональная молекулярной площадке разделяемого вещества, а величина f ° определяется как элюирующая сила. Чем больше элюирующая сила, тем меньше значение К° для данного растворенного вешества и адсорбента. [c.67]

    После выбора растворителей, дающих нужные значения к компонентов образца, дальнейшее улучшение разделения достигается подбором более селективного растворителя из числа растворителей (одно- или двухкомпонентных), обладающих необходимой элюирующей силой. Наибольише изменения селективности подвижной фазы достигаются в том случае, когда изменяется тип межмолекулярных взаимодействий между растворителем и образцом. Так, замена метанола изопропанолом приведет к небольшим изменениям во взаимодействии молекул образца с растворителем и к небольшим изменениям в селективности растворителя, так как оба эти вещества являются до норными растворителями. Гораздо сильнее изменится селективность при использовании растворителя, который является либо чистым акцептором (например, простой эфир), либо имеет большой дипольный момент (например, метиленхлорид). В случае растворителя диэтилового эфира (акцептор) молекулы образца, обладающие донорньпйи свойствами, будут преимущественно удерживаться в подвижной фазе. Если же растворитель имеет большой дипольный момент, в подвижной фазе будут преимущественно оставаться молекулы образца, содержащие группы с большим дапольным моментом. И наконец, если растворитель является донором протонов (метанол), он будет сильнее взаимодействовать с молекулами образца с протоноакцепторными свойствами. В каждом из этих случаев преимуществе шое удерживание тех или иных типов молекул образца в подвижной фазе будет уменьшать значения к для 1ШХ по сравнению с другими молекулами образца, приводя, возможно, к желаемому изменению положения разделяемых компонентов (пиков) на конечной хроматограмме [3]. [c.36]

    Выбор подвижной фазы в жидкостной хроматографии с НСФ осуще-ствлязтся таким же образом, как в распределительной хроматографии. Снайдер [3] предложил для характеристики силы растворителя в распределительной хроматографш параметр Р, который он назвал полярностью растворителя и определил из экспериментальных данных по растворимости. В обычной хроматографии с НСФ (более полярна стационарная фаза) сила подвижной фазы возрастает с увеличением параметра Р, т. е., выбирая растворители с большим значением Р, можно уменьшить значения к образца. В обращенно-фазовой хроматографии с увеличением значения Р растворителя уменьшается его сила и увеличивается к образца. В табл. 20, 21 приведены примеры элюотропных рядов для обычной и обращенно-фазовой хроматографии с НСФ. Селективность растворителя зависит от вкладов в его элюирующую силу донорной, акцепторной и дипольной характеристик растворителя. Используют обычно смеси растворителей, состоящие из неполярного углеводорода с добавкой небольшого количества более полярного растворителя (обычная хроматография) или из воды с добавкой органических растворителей (обращенно-фазовая хроматография). Наиболее часто используют метанол, ацетонитрил, тетрагидрофуран. [c.69]

    Итак, как мы могли убедиться, в качестве неподвижной твердой фазы в ТСХ применяются самые различные материалы, более того, механизмы разделения осуществляемого этим методом, также могут быть соверщенно разными, поэтому обобщить свойства применяемых в ТСХ отдельных растворителей и их смесей довольно сложно. Соотношение между природой разделяемых соединений и растворяющей системой обсуждалось в гл. 3, а элюенты, используемые для различных типов хроматографии, и их соотношение с сорбентами и разделяемыми соединениями рассматривалось в гл. 4—6. При выборе растворителя или смеси растворителей для ТСХ следует учитывать растворимость хроматографируемых соединений в подвижной фазе, а также растворяющую силу (полярность) растворителя или его избирательность. О влиянии полярности растворителя на процесс адсорбции говорилось в гл. 4, разд. 4,3. На рис. 9.9 показан состав различных смесей растворителей одинаковой полярности. Под избирательностью данного растворителя по сравнению с другим растворителем почти такой же полярности подразумевают способность первого избирательно растворять один из компонентов смеси. В статье Снайдера [58] дается классификация 82 растворителей. Общие соотнощения между хроматографируемыми соединениями, элюирующей системой и природой слоя сформулированы Германском [18]. При разделении методом ТСХ чистота растворителей, безусловно, имеет такое же важное значение, как и при разделении другими хроматографическими методами. [c.110]


Смотреть страницы где упоминается термин Подвижная выбор элюирующей силы: [c.42]    [c.309]    [c.42]    [c.42]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.41 , c.145 , c.154 , c.274 , c.294 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.41 , c.145 , c.154 , c.274 , c.294 ]




ПОИСК







© 2024 chem21.info Реклама на сайте