Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность оптимизация

    Значительные резервы повышения производительности катализатора заключены в оптимальном выборе пористой структуры, размера н формы зерен катализатора. Как подбор катализатора, так и оптимизация его пористой структуры и размера зерен представляют важнейшие начальные этапы при решении глобальной проблемы разработки промышленного каталитического процесса. Оптимальность промышленного реактора обычно определяется экономическим критерием, в который наряду с многими факторами, влияющими на рентабельность процесса (например, производительность реактора по целевому продукту, селективность процесса, себестоимость одного или нескольких целевых продуктов, эксплуатационные затраты и т. п.), входят также параметры, характеризующие пористую структуру катализатора, размер и форму зерна. На эти переменные могут быть наложены ограничения, определяемые условиями эксплуатации и технологией приготовления катализаторов. Оптимальный выбор способа приготовления катализатора, при реализации которого формируется заданная микроструктура катализатора, составляет одну из основных стадий всей процедуры принятия решений при разработке промышленного контактно-каталитического процесса. [c.119]


    Следующие две стадии, показанные па рис. 7.4, представляют процесс оптимизации селективности ( оптимизация к и [c.363]

    Доведение до минимума температурных налеганий отдельных фракций на установках АТ и АВТ является одной из задач по оптимизации технологического режима. Выбор рациональной схемы отдельных узлов, правильное использование энергетических потоков, оснащение современных установок эффективным оборудованием с высоким к. п. д. средствами, контроля и автоматики, могут гарантировать высокие технико-экономические показатели промышленной установки и обеспечение большинства вторичных процессов (пиролиза, каталитического крекинга, риформинга, селективных очисток и др.) качественным сырьем. [c.26]

    В установках третьего поколения повышение выхода и качества продуктов, селективности и продолжительности межремонтного цикла достигается за счет перевода установок на полиметаллические катализаторы, а также понижения давления, оптимизации режима, усовершенствования стадии подготовки сырья платформинга, регенерации и реактивации катализатора. [c.158]

    Анализ энергетической эффективности мембранной разделительной системы предполагает как интегральную оценку энергетических затрат на реализацию процесса в целом, так и изучение распределения этих затрат по отдельным стадиям технологического процесса с целью его оптимизации. Для решения этой задачи необходимо установить зависимость критерия энергетической эффективности от проницаемости и селективности мембран, термодинамических и гидродинамических параметров газовых потоков в мембранном модуле и других конструктивных и эксплуатационных характеристик. Анализ сложной мембранной установки включает выявление связи между интегральными энергетическими затратами на разделение газовой смеси и различными вариантами организации газовых потоков. В лю- [c.228]

    Если доля обрыва цепей на поверхности пренебрежимо мала или если поверхность благоприятствует протеканию процесса в нужном направлении (инициирует радикалы, разлагает побочные нестабильные промежуточные продукты и т. п.), то здесь интенсификация теплоотвода и оптимизация реакции достигается максимальным усилением перемешивания и особых проблем не возникает. Иначе обстоит дело при вредном влиянии поверхности за счет обрыва цепей или разложения активных промежуточных продуктов. Тогда направления интенсификации теплообмена и повышения скорости и (или) селективности реакции противоположны. Эту противоположность нельзя обычно устранить каким-либо покрытием поверхности, поскольку, как правило, неактивные в химическом плане поверхности (фосфорные, борные или силикатные эмали) мало теплопроводны. Кроме того, часто вообще не удается подобрать инертное покрытие. В таком случае задачу надо решать расчетом, подбирая решение, оптимальное в химическом или экономическом смысле. Основой такого решения будет математическая модель реактора, представляющая собой систему кинетических уравнений вида (2.5), дополненную уравнениями гибели радикалов на стенке и (или) разложения на стенке кинетических промежуточных продуктов реакции. Без уточнения механизма реакции такую систему с учетом принципа Боденштейна для проточных аппаратов полного смешения (более частый [c.103]


    Во многих случаях дифференциальная селективность изотермического реакционного устройства зависит больше, чем от одной переменной состава, и, следовательно, описанный выше метод непригоден для расчета и оптимизации выхода. Предположим, что зависит от концентраций реагентов и с , которые являются независимыми и изменяются произвольно, и, кроме того, что ярр велико, когда одна из этих концентрации относительно мала. Как подобрать концентрации реагентов в реакторе для получения высокого выхода целевого продукта  [c.205]

    Это условие означает, что дифференциальная селективность г р [см. уравнение ( 1,2)] должна быть максимальной в любом поперечном сечении реактора. Если г])р не имеет максимума, то, как указывалось выше (стр. 216), оптимальны самая высокая или самая низкая допустимые температуры. Суш ествуют интересные возможности температурной оптимизации, когда р имеет максимум нри изменении Т в допустимом температурном интервале (см. пример 1-6). [c.229]

    Усовершенствование и интенсификация процессов со стационарным полиметаллическим катализатором позволили за счет снижения давления, оптимизации температуры и распределения объема катализатора по реакторам увеличить октановое число до 100 пунктов (И.М.). Однако резкое возрастание коксообразования приводило к быстрой дезактивации катализатора, снижению селективности процесса и, в конечном счете, к сокращению продолжительности работы циклов, что резко снижало экономические показатели комбинированного завода. Сутки простоя такого НПЗ связаны с потерей продукции на один и более миллионов рублей. Риформинг с подвижным слоем катализатора позволяем увеличить календарное время работы установки в 3-4 раза и создать условия бесперебойной работы всего комбинированного завода в течение 3- 4 лет. Непрерывная или периодическая регенерация повышает равновесную активность катализатора, способствует углублению процесса, росту его селективности и увеличению качества и выхода водорода в 1,5- 2,5 раза. [c.160]

    Таким образом, при равной жесткости процесса распределение температур на входе в реакторы практически не влияет на наблюдаемую селективность процесса, которая по этой причине не может служить критерием при оптимизации температурного режима в реакторах промышленных установок риформинга. [c.211]

    Изучение технико-экономических показателей разнообразных методов получения продуктов из нефтяного сырья и оптимизация структуры производства их путем разработки таких. методов, которые обеспечивали бы максимальную селективность процесса. [c.12]

    Основной показатель процесса, которому подчинена постановка исследования, принято называть параметром оптимизации. Так, для процесса пиролиза параметром оптимизации является выход этилена или пропилена, для каталитического крекинга — выход бензина и т. д. Параметр оптимизации зависит от ряда показателей режима процесса, называемых факторами, которые обычно неравнозначны, но во всех случаях долншы быть управляемыми. Такими факторами для процессов деструктивной переработки нефтяного сырья являются температура, длительность, дапление и пр., для селективной очистки топливных и масляных фракций — температура, кратность растворителя и т. д. [c.33]

    Повышение селективности процессов за счет оптимизации параметров, выбора аппаратуры и подбора высокоселективных катализаторов. [c.243]

    СЯ из собственно атомной абсорбции А и неселективного поглощения Ан. Таким образом, система регистрации должна обеспечивать выделение чистого сигнала атомной абсорбции A = Aj. — A . Устранение неселективного поглощения просто за счет оптимизации температурной программы атомизатора, как это показано на рис. 3.40, возможно лишь в редких слу чаях. Обычно таким путем можно лишь понизить уровень не-селективного поглощения до значения Ли < 0,5. [c.156]

    Влияние природы сорбента. Термин сорбент (или насадка ) является общим названием материала, заполняющего хроматографическую колонку. Это может быть неподвижная жидкая фаза (НЖФ) и твердый носитель в газо-жидкостной и активный адсорбент в газо-адсорбционной хроматографии. Химическая природа этих материалов обусловливает селективность хроматографической колонки (шгь Кс) и сравнительно мало влияет на ее эффективность (Я, N). Это означает, что при оптимизации прочих параметров в данной задаче разделения природа сорбента остается неизменным параметром. [c.129]

    Пористая структура и размеры зерна катализатора через, диффузионные явления, прежде всего влияют на активность и избирательность катализатора. Эти вопросы рассматривались в главе III. Однако структура катализатора влияет не только на эти свойства. Она определяет в значительной мере механическую прочность катализатора и тем влияет на егодолговечность. Скорость зауглероживания катализатора и скорость регенерации, также зависят от структуры пор катализатора. Форма и размер зерен определяют и - гидравлическое сопротивление слоя катализатора и следовательно энергетические затраты на транспорт потока. В отношении активности и селективности катализатора и сопротивления слоя можно в более или менее строгой форме применять теоретически обоснованные методы оптимизации структуры и формы, в отношении же остальных свойств, на которые влияют структура и форма, приходится применять названные выше методы эмпирической оптимизации или расчетного сравнения отдельных вариантов. [c.189]


    На пути широкого использования электрохимических методов в современном производстве стоит проблема интенсификации электродных процессов. С одной стороны, этот вопрос решается на основе достижений диффузионной кинетики. Так, пористые электроды могут быть использованы не только для оптимизации процессов в химических источниках тока, но и при проведении электросинтеза в техническом масштабе. В этой связи представляют интерес так называемые суспензионные и псевдоожиженные электроды — взвеси частиц электродного материала в растворе. При контакте с токоотводящим электродом эти частицы передают ему свой заряд. Электродные процессы протекают по границе каждой из частиц с раствором, что снижает диффузионные ограничения и позволяет сосредоточить в малом объеме большую поверхность для протекания реакции. С другой стороны, интенсификация электродных процессов связана с поисками новых электродных материалов, удовлетворяющих одновременно требованиям высокой активности, селективности, химической устойчивости и экономии. [c.391]

    Полученная модель позволяет прогнозировать направления оптимизации технологии синтеза ДМД. Так, сведение к минимуму образования ВПП может быть достигнуто путем уменьшения конверсии формальдегида,т. е. увеличения отношения изобутилен формальдегид этот прием может привести к сильному росту селективности процесса. При равных конверсиях исходных реагентов образование ВПП, в случае противотока реагентов меньше, чем в случае прямотока. При реализации такого оптимального режима [ВПП]/[ДМД]>г1) 4/г1 за 5 % (масс.) в условиях промышленного процесса это отношение колеблется в пределах 7—15 %.  [c.205]

    Все это следует учитывать как при оптимизации селективности колонн с гидрофильными адсорбентами, так и особенно при определении термодинамических характеристик адсорбции из разбавленных растворов на таких адсорбентах методом жидкостной хроматографии (см. последний раздел лекции 14). [c.299]

    Последовательно развивая эту идею, нетрудно заключить, что эффективность процессов повышается, если оптимизировать не отдельные установки, а целые комплексы установок в их взаимодействии. Это является следствием своеобразного синергизма. Правда, это еще больше усложняет задачу. В этом случае опти мальная степень превращения в каждом аппарате становится функцией двух факторов 1) влияния глубины превращения в каждом аппарате на производительность всех других установок комплекса — интерференция производительности 2) удельного значения каждого продукта для повышения величины критерия оптимальности всего комплекса в целом — интерференция критерия оптимальности. По существу, эти два вида интерференции химических процессов, вызываемые степенью превращения в каждом реакторе, приводят к компромиссной оптимальной производительности и селективности между всеми реакторами сложной системы. При оптимизации химических комплексов, конечно, приходится учитывать одновременно взаимное влияние многих других факторов, т. е. специфические свойства всего комплекса в рациональном использовании не только материальных потоков, но и тепловых ресурсов. При этом использование энергетических ресурсов каждой установки должно определяться наиболее эффективным удовлетворением энергетических потребностей всего комплекса в целом. [c.19]

    Рассмотренные до сих пор методы и примеры решения задач оптимизации химических реакторов основывались на предположении об известном механизме химической реакции, проводимой в аппарате, тип которого задан в постановке оптимальной задачи. Вместе с тем, на практике часто встречаются случаи, когда исчерпывающая информация о механизме реакции в форме кинетических уравнений отсутствует. В таких случаях может оказаться полезной информация о химическом превращении, полученная в форме зависимости селективности реакции от степени превращения одного из исходных реагентов, участвующего в образовании полезного продукта сложной реакции [3]. [c.136]

    Наиболее эффективными сорбентами для концентрирования и отделения растворенной ртути от мещающих компонентов являются сорбенты с комплексообразующими свойствами, обусловленными серо- и азотсодержащими хелатообразующими группами, привитыми на матрицы различного состава [118, 175]. Однако за счет высокой прочности образующихся комплексов десорбция соединений ртути с таких сорбентов затруднена. Привитые азот- и кислородсодержащие группы менее прочно удерживают ртуть, однако характеризуются меньшей селективностью. Оптимизация условий сорбции, элюентов и режима элюирования позволяет разрабатывать высокочувствительные методы определения ртути в природных и сточных водах. Способом, позволяющим избежать влияние неполноты десорбции с сорбента, является прямое определение сорбированной ртути на твердом сорбенте методом термовозгонки при 850 "С. Так, при концентрировании ртути на сорбенте сферой с тиольными группами и непосредственном определении металла с помощью прокаливания этого сорбента обеспечивается низкий ПО, равный 0.2 нг/л [588]. [c.89]

    В 60 —70-е годы в результате непрерывного совершенствования технологии и катализаторов (переход к хлорированным алю — моплатиновым, разработка биметаллических платино-рениевых, затем полиметаллических высокоактивных, селективных и стабильных катализаторов), оптимизации параметров и ужесточения режима (по ижение рабочих давлений и повышения температуры в реакторах) появились и внедрялись высокопроизводительные и более эффективные процессы платформинга различных поколений со ста1ДИонарным слоем катализатора. [c.191]

    Если селективность по целевому продукту снижается с повышением температуры, то производительность реактора проходит через максимум по мере уменьшения отношения поверхности теплоотвода к объему реактора. Еслп этого нет, то с уменьшением указанного отношения производительность реактора будет монотонно возрастать и оптимум будет лежать на границе технологического ограничения по температуре. Во всех случаях оптимизация должна проводиться при ограпиченип Т Г р. Значение выбирается или из условий устойчивости системы (границы цепного или теплового взрыва) или из соображений о начале заметного протекания реакций, пе описываемых исходной кинетической моделью. [c.104]

    Оптимизация скорости и селективности процесса может б достигнута путем введения понятия об отклонении от равновесия А -. Приближенный метод расчета, основанный на оптимизации [32], обладает большей гибкостью, чем кинетическая или квазигомоген-ная модель ДЖР, так как метод наряду со скоростью химического взаимодействия учитывает и скорость массопередачи. [c.122]

    Необходимым этапом поиска путей повышения эффективности как проектируемых, так и действующих химических производств является оптимизация. Несмотря на го, что с рециркуляцией проводится большое количество промышленных процессов, часто они протекают в условиях, далеких от оптимальных. Это связано с тем, что оптимизация рециклических процессов является сложной задачей ввиду сложности фаничных условий, налагаемых в этом случае на систему. В конце 1960-х гг. М. Ф. Нагиевым был разработан принцип супероптимальности, явившийся обобщением теоретических положений, на которых базируется оптимальное проведение рециклических процессов. Было показано, что когда уже ни один из регулируемых параметров не может привести к дальнейшему повышению эффективности ХТП, улучшения показателей можно добиться воздействием на процесс количеством и(или) составом рециркулята. Рециркуляционные параметры вызывают увеличение скорости химической реакции и приводят к росту селективности процесса и производительности единицы реакционного объема. [c.300]

    На долю моторных топлив во Франции приходится около 35% всего производства нефтепродуктов. В перспективе она должна значительно увеличиться. В условиях ограниченности мировых запасов нефти и быстрого роста цен на нее особое значение приобретает максимально рациональное использование моторных топлив. С этим связано, в частности, усиление дизелизации автопарка Франции (дизельный двигатель примерно на 25% экономичнее карбюраторного). При пеизменном объеме переработки нефти ресурсы дизельных топлив могут быть увеличены за счет оптимизации требований к цетановому числу и повышения температуры конца кипения с помощью использования депрессорных присадок и внедрения специальных процессов селективного гидрокрекинга, обеспечивающих снижение температуры застывания высококипящих дизельных топлив. Предполагается, что к 1990 г. температура перегонки 85% дизельного топлива повысится до 375°С против 350" С в настоящее время. [c.70]

    Дополнительно ресурсы дизельного топлива на НПЗ можно расширить с помощью процессов висбрекинга и особенно гидрокрекинга. Однако увеличение мощностей этих процессов (особенно гидрокрекинга и гидроочистки газойля ККФ) сопряжено с крупными капиталовложениями и эксялуатаци-онными расходами. В то же время можно заметно повысить ресурсы дизельных топлив без значительных затрат в нефтепереработке за очет оптимизации требований к качеству топлив по величине цетанового числа, содержанию серы и другим показателям и расширения фракционного состава топлив путем повышения температуры их конца кипения без снижения температуры-застывания. Например, в США и Канаде в последние 15 лет цетановое число дизельных топлив снизилось с 50 до 45—40, что позволило заметно увеличить долю крекинг-газойля (без его облагораживания) в суммарном дизельном -фонде. Повысить температуру конца кипения дизельных топлив можно благодаря использо.ванию депрессорных присадок или применению процессов адсорбционной или каталитической (селективный гидрокрекинг н-парафинов) депарафинизации. Например, процесс каталитической депарафинизации фирмы Мобил позволяет снизить температуру застывания тяжелого газойля (343—399 °С) с +16 до —23 °С, что дает возможность использовать этот де-парафинированный газойль в качестве компонента дизельного топлива. Уже сейчас в ряде стран ЕЭС допускается, чтобы температура перегонки 90% дизельного топлива составляла 360 С. Полагают, что к 1990—2000 гг. температура выкипания 90% дизельного топлива может достигнуть 382°С. [c.165]

    Повыщенис селективности достигается соответствующим выбором параметров процесса (температура, давление, время контакта) и типа реактора, подбора более селективных катализаторов н т. д, являясь составной частью более общей задачи оптимизации п юцесса. При этом повыщение селективности даже на 1% оз-начае для многотоннажного производства экономию в сотни тысяч рублей. [c.19]

    На месторождениях, разрабатываемых методом заводнения и характеризующихся проницаемостной неоднородностью, актуальной является проблема селективной изоляции водопритока в добывающие скважины. На сегодня разработано большое число технологий, однако до сих пор не до конца решен вопрос об оптимизации объемов и концентраций химреагентов, используемых для этой цели. [c.196]

    Как показано ниже, рациональны лишь некоторые из перечисленных, способов, позволяющие достаточно полно выделять из зистрактного раствора вторичный рафинат требуемого качества. Оптимальные условия селективной очистки пока выбирают экапе-риментально, но уже ведутся работы по применению научных методов оптимизации промышленных процессов, что позволяет получить надежные данные я сократить сроки экоперимента. [c.99]

    Проанализирован ряд вариантов аппаратурно-технологического оформления га-зо-жидкостных процессов с многопродуктовыми последовательно-параллельными и сильно экзотермическими реакциями. Разработаны математические модели полунепрерывных процессов указанного типа и сформулирована задача технико-экономической оптимизации, которая учитывает требования ресурсосбережения в условиях изменяющейся конъюнктуры рынка на продукцию производства. Определены способы управления селективностью процесса по целевым продуктам. В качестве примера решена задача оптимапьного управления гюлунепрерывным процессом оксиэтилирования метанола. В качестве критерия оптимальности использовался заданный состав целевых продуктов, управляющими переменными являются состав исходной загрузки с учетом полного использования сырья и время проведения процесса [2]. [c.33]

    Было показано, что направление реакции по маршругам, приводящим к образованию метана и других алканов или к олефинам, определяется соотношением концентраций различных форм водорода, адсорбированных на поверхности активной фазы, которое, в свою очередь, зависит от свойсгв металла и размера частиц УДП Увеличение доли никеля в составе Ре-№ каталитических систем вызывает возрастание их активности, но селективность по олефинам падает. Замена в каталитической системе никеля на кобальт приводит к увеличению селективности по олефинам, но активность резко снижается. Система, полученная электрохимическим методом, который дает твердые растворы металлов заданного состава, проявила ярко выраженный синергический эффект. При 613 К и соотношении СО Из, равном 1 1, селективность по олефинам составила 23.2%, а УКА - 73.210 моль (г.акт.фазы) ч , что значительно выше, чем для этих металлов по отдельности. Применение в качестве матрицирующего компонента оксида алюминия приводит при высоких температурах к образованию шпинели, что вызывает необратимое падение каталитической активности. Оксиды циркония, напротив, обладают промотирующим действием, и их использование позволяет увеличить селективность процесса по олефинам. Каталитические системы с полученными электрохимическим методом УДП железа и кобальта, матрицированные в оксиде циркоиия, после оптимизации их состава могут быть рекомендованы для пров ышленного использования. [c.19]

    Проанализирован ряд вариантов аппаратурно-технологическою оформления газо-жвдкостньк процессов с многопродуктовыми последовательно-параллельными и сильно экзотермическими реакциями. Разработаны математические модели полунепрерывных процессов указанного типа и сформулирована задача технико-экономической оптимизации, которая учитывает требования ресурсосбережения в условиях изменяющейся конъюнктуры рынка на продукцию производства. Определены способы управления селективностью процесса по целевым продуктам. [c.28]

    При глобальной оптимизации вопрос об увеличении селективности процесса или производительностикаждого реактора или региона решается в соответствии с необходимостью получить наилучшие значения целевой функции всего комплекса в целом. [c.11]

    Перейдем к рассмотрению изменения профилей различных параметров вдоль реактора в системе с рециркуляционной петлей. Необходимое превращение на выходе из реактора может быть получено различными изменениями вдоль реактора параметров системы — температуры, давления, концентрации. Оно связано с количеством рециркулируемых в начало реактора компонентов. Естественно, что для каждой конкретной реакции роль указанных факторов проявляется по-разному. Несомненно, что широкое использование результатов одновременного поиска изменения профилей различных параметров может привести к весьма интересным результатам. Однако для решения этой задачи желательно дальнейшее совершенствование математических методов оптимизации и более детальное изучение химических аспектов процесса. Рассмотрение реакции дегидрирования этана показало, что существует определенный профиль температуры, который отвечает максимальной нроизвоцительности реактора по целевому продукту. При этом расход исходного сырья не является максимальным и соответствует строго определенной селективности и глубине превращения на выходе из реактора. Следовательно оптимальные профили изменения параметров режима эксплуатации действующих реакторов должны определяться одновременным изменением производительности аппарата. В частности, исследования по определению оптимального температурного профиля для консекутивной реакции показали, что в этом случае необ ходимо реакцию начать с самой высокой температуры оптимального профиля. Затем углубление процесса следует проводить по мере снижения температуры также в соответствии с оптимальным профилем, найденным, подчеркиваю, для рециркуляционной системы. Кстати, в этом плане применение увеличенной рециркуляции непрореагпровавшего сырья в адиабатических реакторах (таких, как реактор для каталитического дегидрирования этилбензола в стирол) люжет значительно повысить их мощность по свежему сырью. Прп такой постановке вопроса реакторы должны конструироваться таким образом, чтобы они удовлетворяли требованиям теории. Это противоречит существующему укоренившемуся положению, когда реакция осуществляется в готовой конструкции реактора в зависимости от его возможностей, [c.15]


Библиография для Селективность оптимизация: [c.181]   
Смотреть страницы где упоминается термин Селективность оптимизация: [c.299]    [c.140]    [c.270]    [c.311]    [c.32]    [c.33]    [c.136]    [c.308]    [c.23]    [c.66]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.145 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.145 ]




ПОИСК







© 2025 chem21.info Реклама на сайте