Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографический метод определения активности

    Кроме проявительного хроматографического метода определенный интерес представляет предложенный Рор-шнайдером [6] косвенный способ определения К, основанный на парофазном анализе с применением стандартного вещества, параметры распределения которого в изучаемой системе известны. Однако этот способ требует надежных данных по абсолютным значениям коэффициентов распределения или активностей стандартного вещества в изучаемом растворителе. [c.32]


    Хроматографические методы в последнее время широко используют для исследования поверхностных свойств активных твердых тел. В первую очередь следует отметить хроматографическое измерение изотерм адсорбции индивидуальных веш еств и смесей, определение общей удельной поверхности катализаторов, измерение теплот и энтропий адсорбции. Для нанесенных катализаторов существенным прогрессом явилось развитие хроматографического метода определения, наряду с общей, также и активной поверхности катализатора. В случае кислотно-основных катализаторов удалось создать хроматографический метод определения числа кислых или основных центров и установить функции их распределения по активности на поверхности катализатора. [c.108]

    Наиболее разработанными вопросами, освещенными в данной главе, являются вопросы определения общей поверхности адсорбентов и катализаторов. Наш обзор опубликованных работ в этой области не может претендовать на полноту. Достаточно подробно хроматографические методы измерения адсорбционных равновесий освещены в монографиях Киселева и Яшина [1 ], Жуховицкого и Туркельтауба [2]. Менее разработаны хроматографические методы определения и изучения неоднородности каталитической поверхности, основных и кислотных свойств активных центров и т. д. Эти вопросы мы попытались осветить более подробно. [c.108]

    Значения вириальных коэффициентов для расчета 7°° могут быть взяты из литературы [329, 330]. Кроме того, ниже будет рассмотрен хроматографический метод определения коэффициентов В ч, основанный на использовании газовой хроматографии при повышенном давлении. Если не использовать поправок на неидеальность газовой фазы [см. уравнение (11.11)], то погрешность определения коэффициентов активности в зависимости от природы сорбатов и газов-носителей может достигать 4—5%. [c.285]

    Более прямым хроматографическим методом определения оптической чистоты смеси энантиомеров является хроматография энантиомеров на оптически активных адсорбентах без предварительного превращения в диастереомеры. В данном случае речь [c.299]

    II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авторов - описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов - - , определения количества и силы кислых центров каталитической поверхности й т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]


    Определению коэффициентов активности хроматографическим методом посвящено значительное число работ, причем во многих случаях исследователями проводилось сравнение полученных величин с результатами статических измерений. Как правило, такое сопоставление дает хорошее совпадение. [c.163]

    Определение коэффициента активности статическим и хроматографическим методами. [c.288]

    Хроматографический метод исследования используется для установления аминокислотного состава гидролизатов и первичной структуры белков в изучении аминокислотного состава плазмы и других биологических сред, при количественном определении витаминов, гормонов и иных биологически активных соединений. В силу высокой чувствительности и разрешающей способности метода хроматография применяется для выделения различных веществ в чистом виде и их идентификации. В настоящее время хроматографический анализ биологических жидкостей успешно служит целям диагностики разнообразных заболеваний. [c.174]

    Радиохроматография, эффективный и часто используемый аналитический метод в органической химии и биохимии, сочетает высокую разделительную способность хроматографии на бумаге с большой чувствительностью при определении ионизирующего излучения. Ее значение в синтезе меченых органических соединений возрастает еще благодаря тому, что часто необходимо бывает обнаружить и выделить радиоактивные примеси в очень малых количествах. В некоторых современных синтезах меченых соединений с применением радиоизотопов с весьма высокой удельной активностью и с сильным радиационным действием [66, 84] применение хроматографических методов совершенно необходимо, поскольку они дают возможность обнаружить и отделить очень малые количества продуктов радиолиза, оказывающих существенное влияние на общую активность неочищенного продукта. [c.672]

    Для определения активности силикагеля применяется фронтальный хроматографический метод. [c.43]

    Как указывалось в разд. 3.2, энантиомеры можно разделить в виде диастереомерных производных, получаемых по реакции с оптически активными реагентами. Поскольку диастереомеры обладают различными физическими и химическими свойствами, эти производные можно разделить обычными хроматографическими методами. Часто такие методы достаточно просты в применении, особенно в ГХ, где дериватизация необходима в любом случае. Однако недостатком этих методов являются определенные трудности в интерпретации результатов. [c.58]

    До недавнего времени источником всех данных по биосинтезу поликетидов было применение меченых соединений [97], содержащих (иногда) или С (большей частью). Конечно, параллельно развивались исследования в других областях применения радиоактивных изотопов в биохимии этой теме посвящено несколько монографий [100—103]. Оба изотопа являются источниками мягкого (3-излучения периоды их полураспада достаточно велики, что позволяет осуществить их транспортировку и исключает необходимость введения поправок на распад в ходе эксперимента ( Н обладает меньшим периодом полураспада срок годности меченых соединений ограничивает не их распад, а индуцированное радиацией химическое разложение препаратов). Современное оборудование позволяет определять оба изотопа легко, с высокой степенью точности (часто взвешивание образца менее точно, чем подсчет уровня радиоактивности) и чувствительности достаточно часто надежно определяются продукты реакции с активностью в несколько стотысячных долей от исходной. Один и тот же образец может быть использован для одновременного и независимого определения и С, что делает метод двойного маркирования особенно удобным. Менее точные методы определения радиоактивности используют при различных способах хроматографического разделения смесей. [c.470]

    Метод определения коэффициентов активности путем экстракции растворов инертным газом не требует ни предварительной калибровки хроматографических детекторов, ни трудоемкой подготовки аппаратуры. В упомянутых работах он характеризуется как наиболее точный и привлекательный благодаря своей простоте, надежности и возможности распространения на летучие растворители. [c.263]

    При низких концентрациях вредных веществ в воздухе и недостаточной чувствительности метода определения необходимо проводить концентрирование веществ из больших объемов воздуха, который затруднительно отобрать в жидкие среды вследствие улетучивания последних и потерь определяемого вещества. Для этого используют твердые сорбенты, которые помещают в специальные трубки различной конструкции. Вещества улавливают как на неподвижный, так и на кипящий слой сорбента. При отборе проб на кипящий слой в качестве сорбента часто используют кремнезем, так как его зерна обладают достаточной механической прочностью, а при отборе на неподвижный спой — активные угли, кремнезем, полимерные сорбенты, синтетические молекулярные сита (цеолиты), насадки для хроматографических колонок. Используют также непористые сорбенты — карбонат калия, сульфат меди, хлорид кальция и др. Преимуществом использования таких сорбентов является очень простая десорбция, в том числе одновременное переведение в раствор как самого сорбента, так и сорбированных на его поверхности веществ. [c.463]


    Сопоставление удельных поверхностей катализаторов, определенных различными газохроматографическими и статическим методами, показывает, что наилучшие результаты достигаются при применении метода тепловой десорбции. Разница в определяемых поверхностях составляет в среднем 4% [79, 80]. Несколько меньшая точность других хроматографических методов обусловлена влиянием кинетических факторов и диффузионных процессов. Но это не означает, что они вообще непригодны для сравнительной оценки получаемых твердых тел. Точность их вполне достаточна для проведения массовых анализов, выяснения влияния условий синтеза и различных добавок на параметры структуры твердых тел, активность и селективность получаемых катализаторов и т. д. [c.118]

    Предложены методы определения содержания гидроксильных групп по измерению количества водорода (по активному водороду ) или метана, выделяющегося в результате реакции с алюмогидридом лития или реактивом Гриньяра, хроматографическим [50, 52—56] или каким-либо другим способом. [c.116]

    Хроматографическая адсорбция применяется теперь в самых разнообразных областях, в том числе и для разделения компонентов к изучения состава нефтяных фракций, сланцевых смол и других смесей ух-леводородов и их производных. Этому вопросу посвящено более тысячи оригинальных работ. Из углеводородов легче всего на силикагеле адсорбируются ароматические, затем непредельные и значительно труднее — нафтеновые и парафиновые., Хорощо адсорбируются и сернистые соединения. С увеличением молекулярного веса углеводородов их поверхностная активность растет. На этом, в частности, основан один из методов определения твердых парафинов. [c.119]

    Эта работа была в дальнейшем развита для применения в анализе меченых соединений [18]. Метод конверсии до водорода и двуокиси углерода и раздельного определения активности этих хроматографических зон проточными счетчиками имеет суш ественные преимущества по сравнению с обычным методом измерения активности разделенных соединений  [c.142]

    Определение физико-химических величин. Газо-хроматографические методы широко используются для определения таких физико-химических характеристик, как коэффициенты распределения, коэффициенты активности, теплоты растворения, теплоты адсорбции, поверхность адсорбента, коэффициенты диффузии в газовой и жидкой фазах, константы скоростей гетерогенных и гомогенных реакций и т. п. [c.15]

    Измерить непосредственно термодинамическую активность экстрагента, адсорбированного поверхностью носителя, нельзя, и потому только очень редко коэффициенты распределения, полученные экстракционно-хроматографическим методом, можно сравнивать с коэффициентами распределения, определенными в статической экстракции. Объясняется это тем, что органическая фаза в экстракции — это обычно раствор экстрагента в органическом растворителе, в то время как в экстракционной хроматографии чаще всего используют неразбавленный экстрагент. В тех случаях, когда такое сравнение оправданно, как, например, -при экстракции лантаноидов с помощью ТБФ или других экстрагентов, результаты хорошо согласуются. [c.17]

    В заключение необходимо отметить, что хроматография является не только эффективным методом анализа и очистки, но также и методом исследования адсорбционных процессов и систем адсорбент — основной компонент — микроиримеси. Известен хроматографический метод определения изотерм адсорб ции и теплот адсорбции, метод определения величин поверхности, коэффициентов активности и т. д. Даже в тех случаях, когда чу ствительность детектора не позволяет работать с ми-кронримегями, прогнозирование возможности очистки может быть сделано при исследовании макроконцентраций, [Юскольку времена удерживания при линейных изотермах не зависят от исходной концентрации. Таким путем в работе [40] был подобран сорбент для очистки СгеСЦ от фосфора — силикагель с о-нитроанизолом. [c.179]

    В главах XV и XVI дано описание программирования температуры и препаративной хроматографии. В главах XVII и XVIII рассматриваются хроматографические методы определения. поверхности сорбентов и таких термодинамических величин как коэффициент распределения, коэффициент активности, теплота растворения, свободная энергия и энтропия растворов и некоторые другие специальные вопросы применения хроматографии. [c.4]

    Известны другие, более трудоемкие хроматографические методы определения изотерм адсорбции — методы фронтальной хроматографии , хроматермографии и тепловой де-сорбции . Эти методы применимы для адсорбентов и катализаторов любой пористой структуры. Сняв хроматографически изотерму адсорбции, можно рассчитать удельную поверхность катализатора. Новый экспрессный метод определения поверхности твердых тел предложен недавно Куге и Яши-кава Ч Для систем адсорбент — адсорбат, соответствующих II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авто-ров описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов определения количества и силы кислых центров каталитической поверхности и т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]

    Пасхина Г. С., Яровая Г. Л. Калликреин сыворотки крови человека. Активность фермента и хроматографический метод определения.— Биохимия , 1970, т. 35, с. 1055—1058. [c.374]

    Удельную поверхность адсорбентов на основе хроматографических измерений определяли Нельсон и Эггертсен, а также Рогинский, Киселев и др. Метод определения коэффициентов активности разбавленных растворов в процессе растворения газа или пара в жидкости предложили Кейлеманс и Квантес. Этот метод сыграл и продолжает играть важную роль в термодинамике разбавленных растворов и ее практическом приложении, например в технологии разделения экстрактивной дистилляцией. Метод получил дальнейшее развитие в работах Мартайра, Короля, Вяхирева, Решетниковой, Царфина и др. [c.250]

    Термодинавическое описание адсорбционных систем. Реальная система с поверхностью раздела и система сравнения. Адсорбция как избыточная величина. Уравнения Гиббса для поверхности. Выражение химического потенциала адсорбированного вещества через адсорбцию константа Генри для адсорбционного равновесия, ее определение хроматографическим методом. Изотерма адсорбции, коэффициент активности адсорбированного вещества, поверхностное давление. [c.126]

    На современном уровне развития хроматографической методики эксперимента важное значение приобрел способ анализа хроматограмм, основанный на использовании радиоактивных индикаторов. Подготовка к анапизу радио-хроматографическим методом и методика самого анализа заключаются в следующем. После заполнения колонки подготовленной смесью осадителя и носителя вводят в нее определенный объем исследуемого раствора, содержащего, например, нитрат кобальта, меченный изотопом Со. Если в качестве осадителя был взят гидрофосфат натрия Na2HP04, то в колонке образуется зона фосфата кобальта. Для исследования распределения осадка вдоль зоны (степени равномерности распределения) стеклянную колонку разрезают и из цилиндрической ее части выталкивают стеклянным пестиком столбик сорбента на стеклянную пластинку. Затем разрезают этот столбик на равные части, так чтобы получились диски толщиной, например, по 2 мм каждый. Отдельные диски ( таблетки ) переносят на алюминиевые пластинки, высушивают, взвешивают (обычно на торзионных весах), измельчают и распределяют равномерным слоем на определенной поверхности (I—2 см ), после чего измеряют радиоактивность с помощью счетчика Гейгера—Мюллера. В заключение по результатам измерения активности различных, последовательно расположенных слоев по длине зоны в колонке строят кривую распределения осадка СОз(Р04)г в координатах миллиграмм-эквивалент вещества на 1 г носителя — масса зоны, г (или длина зоны, мм), при условии, что начало оси координат соответствует верхней части колонки. [c.207]

    Коэффициент активности в общем случае зависит от концентрации. Для разбавленных неидеальных растворов, концентрация которых настолько низка, что делает справедливым для них закон Генри, коэффициент у — постоянная величина, равная 7 — коэффициенту активности при бесконечном разбавлении. Так как эта область концентраций вполне доступна изучению хроматографическими методами, то хроматографические методы были использованы для определения 7 . Вместе с тем определенные таким образс м коэффициенты активности трудно отнести к какой-либо концентрации вследствие разбавления пробы, происходящего в процессе элюирования. [c.447]

    Общие критерии для выбора метода разделения можно применить также к радиохимическому разделению в активационном анализе. Однако для корот-коживущих индикаторных радионуклидов решающим требованием становится высокая скорость. Когда радионуклиды с очень высокой активностью, полученные из основы пробы, следует отделить от индикаторных радионуклидов с низкой активностью, требуются высокие факторы разделения до 10 . Хотя в радиохимическом активационном анализе можно применять все обычные методы разделения, используемые для определения следов, а также ряд специальных методов, наиболее важными оказываются ионный обмен и некоторые другие хроматографические методы, а также жидкостная экстракция. [c.115]

    Hoiupta,. В работе осуществлен комплексный подход к решению структурно-аналитических и физико-химических аспектов реакций нефтехимического синтеза на основе спектроскопических, хро-матофафических и химических методов исследования, позволяющий получать качественно новую информацию. Впервые получен комплекс экспериментальных данных структурных, аналитических, кинетических и закономерностей реакций процессов синтеза алкилфенолов и сукцинимидов, которые составили теоретическую базу технологических процессов синтеза алкилфенолов с высокомолекулярными радикалами линейного строения и высокомолекулярных сукцинимидных присадок. Разработаны новые комплексные спектрально-хроматографические методы анализа молекулярных систем в процессах синтеза компонентов поверхностно-активных веществ, присадок, высокочистых полифениловых эфиров, спектроскопические методы определения антиокислительной активности ингибиторов при термоокислении полимеров и энергетических характеристик конформаций вы- [c.8]

    Разработанные спектрально-хроматографические методы анализа продуктов реакций жидкофазного окисления высших а-алефинов, металлирования а-олефинов, осуществленный спектроскопический контроль синтеза антиокислительной присадки для стабилизации полиметилсилоксановых жидкостей, синтеза высокочистых полифениловых эфиров для новой техники являются составной частью этих перспективных процессов нефтехимического синтеза. Актуальное научное и практическое значение имеют разработанные ИК-спектроско-пический метод определения антиокислительной активности ингибиторов при термоокислении каучуков, применимый и к низкомолекулярным углеводородным системам, к любым олигомерам и полимерам, не содержащим карбонильных, гидроксильных и аминогрупп, ИК-спектроскопический метод определения энергетических характеристик конформаций макромолекул аморфно-кристаллических полимеров, результаты корреляционного анализа спектроскопических и физико-химических свойств фенолов, методы структурного анализа и идентификации эпоксидов и концерогенов. [c.10]

    Препаративная тонкослойная хроматография ПТСХ используется для разделения и выделения материалов в количествах, больших чем в обычной аналитической ТСХ. Величина пробы может меняться от 10 мг до более чем 1 г. В препаративной ТСХ разделяемые материалы часто наносятся на пластинку не в виде пятен, а в виде длинных полосок. После проявления конкретные компоненты могут быть выделены путем соскабливания слоя сорбента с пластинки в нужной области и последующего вымывания разделенного материала с сорбента с помощью сильного растворителя. Материал, выделенный из слоя, мох<ет требовать дальнейшей очистки методом ТСХ или другими хроматографическими методами, если его чистота недостаточна для идентификации и определения структуры с помощью элементного анализа или спектрометрии, для изучения биологической активности или применения в химическом синтезе или для использования в качестве стандартного материала при сравнении с неизвестными образцами. [c.131]

    Авторы работы [608] провели проверку хроматографического метода на шести углеводородах, растворенных в феноле, фурфуроле и диметилформамиде, — растворителях, получивших широкое распространение в экстрактивной дистилляции. И как показали проведенные ими исследования, в зависимости от выбранного подхода расхождение в результатах может достигать 10%. Однако позднее Эккерт и др. [260] улучшили методику определения, что дало возможность измерять коэффициенты активности даже в таких растворителях, летучесть которых лишь незначительно выше летучеста растворенных веществ. Состояние равновесия достигалось достаточно быстро, что позволило выполнять по нескольку десятков измерений в день. Указанными авторами опубликованы данные более чем о десяти соединениях, растворенных в таких растворителях, ш бензол, 1,2-дихлорэтан и этанол. Результаты хроматографического определения достаточно хорошо согласуются с некоторыми данными, полученными при изм рении равновесия между паром и жидкостью, и данными дифференциальной эбуллиоскопии.  [c.220]

    СТРУЕВЫЕ КИНЕТИЧЕСКИЕ МЕТОДЫ (проточные методы), используют для исследования кинетики и механизма р ций, определения активности и селективности катализаторов. При этом поток реагента (индивидуального в-ва или смеси его с инертным разбавителем) пропускают через термостатируемый. трубчатый реактор с катализатором или без него. Скорость потока м. 6. постоянной, нарастающей или мгновенно падающей до нуля соотв. различают методы непрерывной струи, ускоренной струи и остановленной струи. В каждом из методов определяют зависимость состава смеси продуктов или кол-ва образующегося (либо поглощающегося) при р-ции газа от времени пребывания реагента в зоне р-ции (времени контакта) для этого примен. хроматографич., электрохим.. Спектральные или др. методы анализа. Затем находят кинетич. ур-ние, описывающее зависимость скорости р-ции от конц. реагентов или зависимость степени превращ. от времени контакта, а по нему — константу скорости р-ции. В импульсном микрокаталитич. варианте С. к. м. реагент периодически вводят в поток газа-носителя, непрерывно пропускаемый через реактор с катализатором, анализируя продукты на выходе из реактора хроматографически. [c.548]

    Газохроматографические методы находят все большее применение в препаративной химии, в кинетических исследованиях, в изучении каталитических процессов. С успехом применяются хроматографические методы для определения физических, физико-химических и термодинамических величин как, например, поверхность сорбентов, коэффициент распределения, коэффициент активности, теплота растворения, свободная энергия и энтропия растворов и т. д. [c.6]

    В некоторых исследованиях используют одновременно два метода проведения эксперимента. В качестве примера можно привести работы Панкова с сотр. [И], посвященные идентификации высших пиридиновых оснований в продуктах промышленного синтеза ряда пи-ридинов. Гидрирование двойных связей в боковых углеводородных радикалах проводят в растворителе этаноле при комнатной температуре в атмосфере водорода на палладиевом (2%) катализаторе, осажденном на активном угле. О наличии и числе двойных связей судят на основании изменения времени удерживания компонентов после гидрирования. Для определения углеродного скелета анализируемые компоненты после разделения на хроматографической колонке и детектирования направляют в помещенный в печь при 250 °С реактор, заполненный катализатором (5% платины на пористом стекле). В реакторе происходит гидрирование пиридинового кольца и расщепление его до соответствующего углеводорода. Продукты гидрогенолиза собирают в ловушку с этанолом и анализируют на капиллярной колонке со скваланом. Наряду с основным продуктом при гидрогенолизе образуются также и побочные продукты, которые дают дополнительную информацию о структуре анализируемого вещества. Идентификацию продуктов гидрогенолиза проводят на основании опубликованных в литературе данных по удерживанию. Следует отметить, что в работах Панкова с сотр. наряду с реакционно-хроматографическим методом используют методы УФ-спектроскопии и ПМР. [c.122]


Смотреть страницы где упоминается термин Хроматографический метод определения активности: [c.39]    [c.51]    [c.140]    [c.188]    [c.449]    [c.548]    [c.445]    [c.39]    [c.39]    [c.500]    [c.373]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.533 ]




ПОИСК





Смотрите так же термины и статьи:

Метод активные

Методы хроматографические

Определение ХПК активного ила



© 2025 chem21.info Реклама на сайте