Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение электронной спектроскопии для исследования химических реакций

    Глава 7 Применение электронной спектроскопии для исследования химических реакций [c.195]

    Благодаря быстрому возникновению новых и усовершенствованию существуюш,их методов исследования и успехам в области физики и химии твердого тела наши сведения о катализаторах пополняются буквально с каждым днем. В настоящее время применение оптической спектроскопии, радиоспектроскопии и других физических методов позволяет более определенно, чем ранее, говорить об электронном строении, о химической природе активных центров и даже об их пространственной структуре. То же можно сказать и о первичных стадиях превращений катализируемых веществ. И здесь также оказалось возможным при помощи физических методов перейти от гипотетических схем к прямому наблюдению и создать достаточно определенное представление о состоянии реагирующих веществ на поверхности катализатора, как и об его участии в каталитической реакции. [c.175]


    Определение состава поверхности N1—5-катализаторов посредством электронной Оже-спектроскопии показало, например, наличие взаимосвязи между составом и гидрогенизационной активностью [15]. Вероятно, этот тип связи имеет значение для каталитических систем, подверженных воздействию сероводорода, например таких, с которыми приходится сталкиваться при переработке угля СРК. Информация о взаимосвязи активности с составом поверхности вместе с термодинамическими данными о системе может представлять ценность при разработке оптимальных катализаторов. Ультрафиолетовая фотоэлектронная и рентгеновская спектроскопия были уже использованы для исследования химической и электронной структуры элементов в катализаторе при изучении ряда соединений, включающих оксиды и сульфиды молибдена и кобальта [16, 17]. Применение этих методов позволяет лучше понять свойства поверхности веществ (как до, так и после реакции), представляющих интерес для катализа. Для использования в условиях протекающей реакции представляет большой интерес метод рентгеновской спектроскопии тонких структур края поглощения (см. разд. 11.3), который может, в принципе, служить руководством по управлению работой катализатора даже в таких сложных процессах, как процессы переработки нефти и угля. [c.221]

    С помощью спектроскопии электронного парамагнитного резонанса можно обнаружить неспаренные электроны и получить полезную информацию о ближайшем окружении электрона. Как правило, химической частицей, содержащей неспаренный электрон, является свободный радикал. Таким образом, в принципе можно идентифицировать свободные радикалы и измерять их в очень малых концентрациях (до 10 моль л) при наиболее благоприятных условиях. Благодаря этому ЭПР получил широкое применение при исследовании реакций полимеров. Этот тип спектроскопии оказывает теперь большую помощь при детальных исследованиях таких процессов, как полимеризация, окисление — восстановление, деструкция, радиационные и фотохимические эффекты и даже вальцевание полимеров. [c.407]

    Метод электронного парамагнитного резонанса (ЭПР) прочно вошел в повседневную исследовательскую практику многих лабораторий. На него опираются экспериментальные исследования в ряде отраслей физики, химии, биологии, медицины изучение строения сложных молекул, механизма химических реакций, процессов катализа физико-химических превращений, процессов в живых тканях и др. Несомненно, что применение спектроскопии ЭПР в исследовательских работах различных направлений в дальнейшем будет неуклонно расширяться. [c.5]


    Влияние растворителя на растворенное вещество выражается прежде всего в изменении химического потенциала последнего в жидкой фазе. Результаты этого эффекта можно наблюдать во всех случаях, когда получаемые при измерениях величины являются функцией химического потенциала растворенного компонента. Это имеет место, например, при изучении фазового равновесия, равновесия в химических реакциях (при применении теории переходных состояний для вычисления констант скоростей химических реакций), а также в исследованиях изменений состояния молекул растворенного соединения под действием растворителя спектральными методами (с использованием спектров электронного возбуждения, ИК- и ЯМР-спектроскопии и ЭПР). Влияние растворителя необходимо учитывать при исследовании относительных летучестей растворенных соединений (выбор экстрагирующих агентов для экстрактивной дистилляции) и относительных времен удерживания в газовой хроматографии. [c.150]

    Необходимость контроля за нефтепродуктами привела к быстрому развитию масс-спектрометрии. В связи с разработкой во время войны радарной техники были достигнуты успехи и в радиоспектроскопической аппаратуре, что привело к почти одновременному возникновению трех новых методов микроволновой газовой спектроскопии, ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР). До 1945 г. лабораторная техника в органической химии мало отличалась от техники 1895 или даже 1875 г., ныне современные спектроскопические методы революционизировали определение молекулярной структуры как в органической, так и в неорганической химии , — пишут видные американские химики — авторы доклада о фундаментальных исследованиях по химии в США [5, с. 3—41. Эти методы позволяют ныне изучить молекулярную структуру и свойства не только стабильных органических соединений, но и промежуточных продуктов реакции, так же как и самый акт химического взаимодействия. Новые методы могут давать более точную и быструю информацию, чем любые другие физические, физико-химические или химические методы. Для них требуются малые количества вещества, которое часто может быть возвращено химику. Благодаря своей высокой избирательности и чувствительности они незаменимы при анализе сложных смесей и обнаружении примесей, они не влияют на состав смесей таким образом, не нарушают таутомерных, конформационных и других равновесий и позволяют вести контроль за процессом, облегчая кинетические исследования [6, с. 1]. Поэтому-то в истории органической химии ныне должное и почетное место должна занять история применения в ней физических методов исследования. Далее в шести главах мы и рассмотрим в историческом аспекте важнейшие и наиболее актуальные из этих методов в той последовательности, которая подсказывается не только временем их первого применения к органическим соединениям, общностью природы изучаемых ими явлений, но и характером информации, которую они предоставляют. [c.196]

    Направление научных исследований синтез органических соединений серы, фосфора, фтора, производных ацетилена, разных специальных продуктов, биологически активных веществ, биологически разлагаемых детергентов полимеризация и изучение свойств высокомолекулярных соединений (привитые сополимеры, термостойкие полимеры, ионообменные мембраны, адгезивы) разработка и внедрение новых методов синтеза на пилотных установках, методов анализа в области применения ядохимикатов улучшение техники контроля и техники безопасности исследования в области ферментов и ферментационных процессов изучение микроструктуры соединений с помощью рентгеновских лучей, электронной микроскопии, ядерного магнитного резонанса, УФ-, ИК-спектроскопии и спектров комбинационного рассеяния микроанализ физико-химические исследования полимеров (хроматография, техника адсорбции, кинетика реакций, катализ) изучение свойств твердых тел (например, углей, графитов), аэрозолей очистка воды и воздуха от промышленных загрязнений. [c.341]

    В последние годы создан ряд новых спектроскопических методов ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадрупольный резонанс (ЯКР), у-резонансная спектроскопия (ЯГР) и другие. Применение физических методов для исследования комплексообразования в растворах имеет свое особое значение, поскольку эти методы дают качественно иную информацию о состоянии комплексов в растворах, чем физико-химические методы. Наиболее важным моментом является то, что спектроскопические методы позволяют характеризовать разные комплексы одного и того же центрального иона некоторыми спектроскопическими параметрами. Число комплексов может быть определено непосредственно по спектру. Нередко спектр позволяет определить и состав комплекса. Спектроскопические методы дают уникальные сведения и об электронном строении комплексных соединений как в твердом состоянии, так и в растворах. Несмотря на перспективность-и большие возможности, физические методы недостаточно широко используются для исследования реакций комплексообразования в растворах. [c.329]


    Определение характеристик поведения нанесенных катализаторов в случае их отравления во время реакции является трудной, о необходимой задачей. Методы электронной спектроскопии, используемые для изучения поверхностных слоев, требуют применения высокого вакуума (чтобы провести энергетический анализ испускаемых электронов), поэтому они не могут применяться для реакционных систем. Методы, использующие более проницающее излучение (спектроскопия Мессбауэра, инфракрасная спектроскопия и метод EXAFS), должны быть приспособлены для соответствующих условий, но без кристаллической фазы в высокодисперсной форме не может быть резкого различия в составе между объемом и поверхностным слоем. Должна преследоваться цель изучения активных мест в период протекания химической реакции в реакционных системах. Естественно, должны быть разработаны соответствующие физические методы исследования. [c.241]

    Подобные измерения могут быть произведены в присутствии других соединений, не поглощающих свет той же длины волны с той же самой интенсивностью. Практически последнее условие совершенно не ограничивает применение метода, и, кроме использования в обычном количественном анализе, спектрофотометрня применяется при изучении скоростей химических реакций и для измерения констант равновесия процессов ионизации, таутомери-зации и переноса заряда. Будучи основано на эмпирическом правиле, использование спектроскопии не требует знания природы электронного перехода, вызывающего ту или иную изучаемую полосу поглощения, однако теория может явиться основной для расширения областей применения или облегчить интерпретацию полученных данных, например в случае исследования явления переноса заряда. [c.320]

    Прежде чем рассматривать дальше данный вопрос, сделаем краткий обзор истории применения внутренних стандартов в рентгеновской эмиссионной спектроскопии. Этот метод появился впервые в классических работах Хевеши и его коллег по определению гафния [174, 175, 226—228]. В этих ранних исследованиях отношения интенсивностей были нередко чувствительны к составу даже при возбуждении электронами, когда эффекты поглощения и возбуждения малы (см. 7.10). Глокер и Шрайбер [166], используя электронное возбуждение, пытались определить ванадий в стали, взяв в качестве внутреннего стандарта титан. Они установили, что отношение интенсивностей заметно меняется в зависимости от концентрации вольфрама в стали, так что истинное содержание ванадия занижалось присутствием вольфрама. Они полагали, что эти отклонения могли произойти по следующим причинам 1) из-за различной скорости испарения Е и ст 2) из-за химических реакций, которые превращают Е или ст либо тот и другой в вещества, испаряющиеся по-разно.му 3) из-за химических реакций, которые нарушают однородное распределение Е и ст в образце. Эти и аналогичные им процессы возможны, если при электронной бомбардировке образец перегревается. Возможность существования этих и аналогичных им процессов является одним из недостатков макроскопического электронного возбуждения. Попутно заметим, что перечисленные здесь отклонения не являются следствиями эффектов поглощения и возбуждения. [c.201]

    Химическое отделение Заведующий A. R. Katritzky Направление научных исследований теоретическая химия физическая химия электрохимия фотохимия органических молекул в растворах применение ИК-спектроскопии и спектров ядерного магнитного и электронного парамагнитного резонанса для определения структуры органических и неорганических соединений синтез и реакции присоединения ненасыщенных углеводородов конформационный анализ и таутомерия гетероциклических соединений синтез порфиринов и родственных им соединений стереохимия пирролов, дипиррометанов и дипиррометенов анализ состава цитрусовых масел. [c.256]

    Здесь же отметим, что исследования ионно-молекулярных реакций нашли также применение для измерения термохимических величин, например, для измерения сродства молекул к протону [341], к электрону [763], а также в аналитической масс-спектроскопии в методе так называемой химической ионизации [758, 769, 770]. В этом методе регистрируется масс-спектр, получаемый нри реакции ионов (например, СН5, образуемых при ионно-молекулярных реакциях в СН4) с анализируемыми молекулами. Получаемый масс-спектр оказывается малолинейчатым по сравнению с масс-спектром электронного удара, что сильно упрощает анализ и расширяет аналитические возможности масс-спектрометрии. [c.379]

    Химическое отделение Заведующий W. D. Ollis Направление научных исследований теория химической связи в органических и неорганических молекулах спектроскопия возбужденных молекул применение рентгеновской дифракции для изучения строения жидкостей и растворов реакции атомов и радикалов в газовой фазе полярография в неводных растворителях химическая структура смешанных окислов металлов боргидриды органические реакции в сильных кислотах фотоокисление электронная и вибрационная релаксация в ароматических молекулах металлорганические соединения и комплексы переходных металлов химия фенолов, природных пигментов, алкалоидов механизм действия энзимов строение, синт. з, биосинтез и масс-спектрометрия природных О-гетероциклических соединений фотохимия нуклеиновых кислот полициклические тиофены нитроамины биосинтез. [c.270]


Смотреть страницы где упоминается термин Применение электронной спектроскопии для исследования химических реакций: [c.2]    [c.394]    [c.9]    [c.14]   
Смотреть главы в:

Электронные спектры в органической химии -> Применение электронной спектроскопии для исследования химических реакций




ПОИСК





Смотрите так же термины и статьи:

Реакция исследование

Спектроскопия электронная

ЭПР-спектроскопия применение

спектроскопия реакции



© 2025 chem21.info Реклама на сайте