Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка масляных фракций

Рис. 4.4. Принципиальная схема установки очистки масляных фракций фенолом Рис. 4.4. <a href="/info/844583">Принципиальная схема установки</a> <a href="/info/1473447">очистки масляных фракций</a> фенолом

    Технология процессов селективной очистки масляных фракций и деасфальтизатов [c.236]

    Основным сырьем для производства битумов в нашей стране являются остаточные продукты нефтепереработки гудроны, асфальты деасфальтизации, экстракты селективной очистки масляных фракций. Использование природных битумов крайне незначительно. [c.6]

Рис. 5.12. Схема очистки масляных фракций фенолом Рис. 5.12. Схема <a href="/info/1473447">очистки масляных фракций</a> фенолом
Рис. 5.13. Схема очистки масляных фракций фурфуролом Рис. 5.13. Схема <a href="/info/1473447">очистки масляных фракций</a> фурфуролом
    Атмосферно-ваку-умная перегонка нефти. . . Фенольная очистка масляных фракций. . .  [c.147]

    Экстракторы применяют на установках, где компоненты сырья для битумного производства получаются как побочная продукция. Непосредственно на битумных установках с целью производства битумов их не применяют. Подробно экстракторы описаны в литературе, посвященной процессам деасфальтизации остатков перегонки и селективной очистки масляных фракций [204—205]. [c.138]

    Таблща 10. Результаты очистки масляных фракций и деасфальтизата самотлорской нефти фенолом и фурфуролом [c.98]

    СЕЛЕКТИВНАЯ ОЧИСТКА МАСЛЯНЫХ ФРАКЦИИ И ДЕАСФАЛЬТИЗАТОВ [c.182]

    В то же время при увеличении кратности растворителя можно получать рафинат с большим выходом и с требуемым индексом вязкости, чем при повышении температуры процесса (рис. 24) [45, с. 92]. В связи с этим выбор оптимальных условий селективной очистки, позволяющих получать высокоиндексные масла с достаточно высоким выходом, зависит от характера сырья и свойств растворителя и достигается сочетанием повышения кратности растворителя и температуры экстракции, В табл. 10 [45, с. 79 и 94] приведены условия я результаты очистки масляных фракций самотлорской нефти фенолом и фурфуролом. [c.99]


    Адсорбционная очистка масляных фракций [c.256]

    Реакция гидрирования идет с разрывом связей углерод — кислород и образованием углеводородов и воды. Гидрирование кислородсодержащих соединений не требует жестких условий как правило, кислород удаляется легче, чем азот. С увеличением молекулярной массы кислородсодержащих соединений их гидрирование облегчается, поэтому очистка масляных фракций от этих соединений не вызывает затруднений. Основное количество высокомолекулярных веществ в сырье для цроизводства масел составляют смолы. Большая молекулярная масса и значительное содержание кислорода, азота и серы обусловливают относительно легкое разложение смол в условиях гидрогенизационных процессов. При этом образуются углеводороды различных групп и соединения гетероатомов с водородом — вода, аммиак и сероводород. [c.296]

    Как указывалось выше (см. стр. 12) и как видно из данных, приведенных в табл. 4, наибольшее развитие в последние годы получили процессы гидроочистки, применяемые в настоящее время для удаления серы не только из бензинов и прямогонных дизельных топлив, но и для очистки масляных фракций, нефтяных остатков, сырой нефти, т. е. практически любых видов сырья, полупродуктов и продуктов нефтепереработки. [c.47]

    В нашей стране основным растворителем для селективной очистки является фенол, который благодаря своей более высокой растворяющей способности лучше всего пригоден для очистки масляных фракций (особенно вязких и остаточных) таких отечественных смолистых парафинистых нефтей, как туймазинская, ромашкинская, западносибирские и др. Имеются значительные ресурсы этого растворителя. [c.213]

    ТАБЛИЦА 7.15. Селективная очистка масляных фракций [c.613]

    В настоящее время широко распространен метод очистки масляных фракций некоторыми растворителями, основанный на различной растворимости углеводородов. Необходим такой растворитель, который бы селективно удалял из масла нежелательные компоненты (полициклические ароматические и нафтено-ароматические углеводороды с короткими боковыми цепями, непредельные, сернистые и азотистые соединения). Очистка производится в экстракционных колоннах, которые бывают либо полыми внутри, либо с насадкой или тарелками различного типа. В качестве растворителей используют главным образом фурфурол и фенол. [c.266]

    В работе [105] подробно рассмотрена гидроизомеризация парафинов С22—С32, получаемых при депарафинизации рафинатов селективной очистки масляных фракций. Было установлено, что процесс сопровождается реакциями крекинга и дегидроциклизации, приводящей к образованию нафтеновых и ароматических углеводородов. Существенное влияние на скорость основных реакций оказывает гидрирующая и расщепляющая активность катализаторов. Наиболее селективно процесс протекает над алюмоплатиновым катализатором под давлением 50 ат при температуре 430—440° С и удельной [c.287]

    Один из методов концентрирования азотсодержащих соединений— селективная фенольная экстракция. При фенольной очистке масляных фракций Западной Сибири азотсодержащие соединения сосредоточивались в экстракте (табл. 84) [203]. [c.256]

    Образцы битумов получали смешением асфальтенов, смол и масел. В качестве масляного компонента использовали экстракты фенольной очистки масляных фракций и очищенные масла туймазинской нефти. В качестве асфальтенов использовали асфальт деасфальтизации арланского гудрона бензином. Смолистый компонент вносили в получаемый битум вместе с асфальтом и частично, с экстрактами. Асфальтены в использованных нами компонентах определяли осаждением в петролейном эфире смолы разделяли на силикагеле. Характеристика продуктов, использованных для получения битумных композиций, представлена в табл. 1. [c.182]

    Асфальто-смолпстые вещества очень плохо растворяются в пропане, а асфальтены практически не растворяются. При температурах обработки выше 40° С они начинают незначительно растворяться в пропане. Это свойство п позволяет применять пропан в качестве деасфальтирующего и обессмоливающего растворителя для очистки масляных фракций желательные углеводороды перехпттяд. в раствор, а нежелательные выделяются. Процесс деасфальтизации гудрона или полугудрона основан на различной растворяющей способности жидкого пропана по отношению к жидким углеводородам и асфальто-смолистым веществам. [c.212]

    СЕЛЕКТИВНАЯ ОЧИСТКА МАСЛЯНЫХ ФРАКЦИЙ И ОСТАТКОВ [c.93]

    Преимуществом фенола перед фурфуролом является его большая растворяющая опособность в отношении полициклических ароматических углеводородов, смол и серосодержащих соединений, что особенно важно при очистке высококипящих фракций и остатков. Крат, ость фенола к сырью обычно.меньше, чем фурфурола. Однако фенол несколько уступает фурфуролу по избирательности, в результате при равном расходе растворителя на очистку одного и того же сырья выход рафината фурфурольной очистки обычно выше, чем фенольной. Для очистки масляных фракций и деасфальтизатов из сернистых нефтей используют преимущественно фенол фурфурол более эффективен в тех случаях, когда из-за низких критических температур растворения с сырьем нельзя использовать сухой фенол, т. е. для низкокипящих фракций и фракций, обогащенных ароматическими углеводородами. Парный растворитель, т. е. смесь фенола и крезола с пропаном (селекто), используют в так называемом дуосол-процессе, где одновременно осуществляются процессы деасфальтизации и селективной очистки. Ввиду своеобразия этого сложного растворителя более подробно он рассмотрен в соответствующем разделе. [c.94]


    При фенольной очистке масляные фракции одновременно обессериваются и деазотируются в результате их удаления в составе юлициклических углеводородов и смол. [c.238]

    Основная масса серы концентрируется в маслах, содержание которых составляет обычно около 2% на парафин. При бюлее глубоком обезмасливании содержание масел, а вместе с ними и серы, может быть значительно уменьшено. Однако глубокое обезмасливание парафинового гача приводит к существенному снижению производительности установки обезмасливания и уменьшению выхода товарного парафина за счет повышенных потерь последнего с фильтратом обезмасливания. Другая возможность снижения содержания серы в парафинах заключается в применении гидроочистки парафинов или рафинатов фенольной очистки масляных фракций. Испытания, проведенные на опытно-промышленной установке в Куйбышевском НИИНП, показали, что при гидроочистке парафина с начальным содержанием серы 0,143% вес. в очищенном парафине сера практически отсутствовала 196]. В результате гидроочистки одновременно с удалением серы улучша- [c.183]

    Подход к расчету процессов очистки масляных фракций селективными растворителями осуш,ествлен с совершенно новых позиций, что позволило отказаться от традиционных графических методов расчета процессов экстракции с помош,ью треугольных диаграмм и применить математические модели многоступенчатой экстракции. На основании составленных программ были выполнены расчеты на ЭВМ, которые показали удовлетворительную сходимость с практическими данными на действующих установках. Приведены методики расчета абсорберов моноэтаноламиновой очистки газов, адсорберов для осушки газов, расчета элементов факельных установок, систем каталитического обезвреживания газовых выбросов, а также расчеты основных элементов сооружений по механической и биохимической очистке производственных сточных вод. [c.7]

    Большое значение с точки зрения качественных и технико-экономических показателей цроцеаса оелектив ной очистки имеет фракционный состав сырья. С повышением пределов выкипания фракций одной и той же нефти растет число колец в молекулах циклических углеводородов при одновременном увеличении числа атомов углерода в боковых цепях, что приводит к повышению их критической температуры растворения (КТР) в данном растворителе. Растворение же смолистых веществ и серооргаяических соединений, содержание которых увеличивается с повышением температуры выкипания фракции, происходит при более низкой температуре экстракции. В связи с тем, что КТР компонентов масляного сырья зависит от структурных особенностей их молекул и изменяется с изменением пределов выкипания фракции, одним из важнейших факторов процесса селективной очистки является фракционный состав сырья. При очистке масляных фракций, выкипающих в широком интервале температур, вместе с низкоиндексными компонентами удаляются и приближающиеся к [c.91]

    N-Meтилпиppoлидoн (НМП) является перспективным растворителем для очистки масляного сырья 1[76]. Рафинаты, полученные при экстракции Ы-метилпирролидоном дистиллята и деасфальтизата тюменских нефтей, характеризуются большим выходом по сравнению с рафинатами фенольной очистки, что указывает на меньшую растворяющую способность Н-метилпирролидона [77]. Условия и результаты трехступенчатой псевдопротивоточ-ной очистки масляной фракции 420—500 °С и деасфальтизата следующие  [c.110]

    Процессы сернокислотной очистки применяются для очистки масляных фракций из уникальных малосернистых беспарафини-стых нефтей типа бакинских и эмбенских с целью получения масел малотоннажного и специализированного ассортимента. Повсеместно заменяются на более совершенные экстракционные и гидрогенизационные процессы, в перспективе могут сохраниться только для выработки белых масел. [c.250]

    Процессы экстракционной деароматизации нефтяных фракций успешно используются в производственной практике (селективная очистка масляных фракций, выделение индивидуальных АУ из риформата и др.). Главным отлтием процесса экстракционной деароматизации дизельных фракций от уже известных является используемый экстрагент. Проведенные исследования ряда экстрагентов [3,4] показали, что экстракционная деароматизация с их применением позволяет получить требуемое содержание АУ (5-10 %) в рафинате и экстракт, концентрация АУ в котором составляет 75-90 %. [c.107]

    В отечественной нефтепереработке широко распространён процесс селективной очистки масляных фракций фенолом. Анализ промышленных объектов показывает их недостаточно высокую эффеетивность. Б частности, происходят потери с экстрактом от 5 до 10 % желательных сырьевых компонентов. Это связано с низкой избирательностью процесса в шшней части экстракционных колонн установок фенольной очистки масел с использованием известных способов создания рисайкла (подача анпфастворителя, экстракта, экстрактного раствора и др.). Интенсифицировать процесс жидкостной экстракции можно за счёт разработанных новых способов создания рисайкла, в том числе и комбинированных. Их влияние на селективность, являющуюся основным свойством растворителя и определяющую чёткость разделения сырьевых компонеетов и экономичность процесса многоступенчатой жидкостной экстракции, показано в данной работе. [c.123]

    Расчёт на ЭВМ многоступенчатой фенольной очистки масляной фракции проводился в трёх режимах 1 - с постоянной кратностью растворителя, 2 - с фиксированным отбором рафината и 3 - с фиксированным качеством рафината. В качестве базовой технологии для сравнения принята схема, в которой ри-сайкл в отгонной части экстрактора создаётся экстрактом (е). Масса рециркулятов фиксирована и составляет 20 % от сырья. [c.146]

    Существуют и другие схемы производства масел. Так, из бакинских нефтей масла вырабатывают методами сернокислотной и щелочной очистки. На ряде заводов существуют установки по очистке масляных фракций парными растворителями (дуосол-процесс), на которых совмещаются процессы деасфалыизации и избирательной очистки масел. [c.57]

    Технологическая схема установки очистки масляных фракций фенолом приведена на рис. 5.12. Исходная масляная фракция подается при температуре 115 °С в верхнюю часть абсорбционной колонны K-J- В нижнюю часть этой колонны поступает водяной пар, содержащий пары фенола. Пары фенола улавливаются маслом. Вода после конденсации направляется в сборник Е-1. Масло с низа абсорбера подается в среднюю часть З кстрактора Э-1. В качестве экстрактора применяются колонны с насадкой или с жалюзийными тарелками. На верх экстрактора подается расплавленный фенол. Из нижней части [c.291]

    На нефтеперерабатывающих предприятиях адсорбенты применяются для следующих целей очистки масляных фракций от нежелательных компонентов (взамен селективной очистки) доочистки предварительно обработанных селектииными растворителями и депарафинированных масляных фракций доочистки жидких и твердых парафинов очистки индивидуальных ароматических углеводородов осушки углеводородных газов и нефтяных фракций и т. д. Особую группу представляют процессы избирательной адсорбции с применением синтетических цеолитов. Они используются для выделения из жидких фракций нормальных алканов. [c.321]

    Наибольшее раслространение при очистке масляных фракций получил метод кристаллизации с использованием растворителей. Чтобы полно извлечь из рафинатов селективной очистки твердые парафины, необходимо глубоко охладить сырье. Однако при охлаждении заметно увеличивается вязкость рафината, а это затрудняет рост кристаллов парафинов. Было установлено, что добавление растворителя позволяет, не повышая вязкости сырья, глубоко охладить его и тем самым обеспечить выделение парафинов. [c.327]

    Выше уже отмечалось, что при длительном нагревании метил-нафталина, а также высокомолекулярных моно- и бициклических ароматических углеводородов, выделенных из нефти при 300— 350° С, становится заметным процесс уплотнения, ведущий к образованию конденсированных полициклических ароматических структур. Этот процесс не может не оказывать влияния на характер структуры полициклических конденсированных ароматических углеводородов высококипящих дистиллятных масляных фракций и остаточных нефтепродуктов, а также на количественное содержание поликонденсированных углеводородов в этих фракциях. Влиянием высоких температур, несомненно, объясняется относительно высокое содержание полициклических ароматических углеводородов (содержащих в конденсированном ядре три и более бензольных кольца) в таких нефтепродуктах, как газойль каталитического крекинга, экстракты избирательной очистки масляных фракций и др. [c.203]

    В настоящее время экстракция и экстрактивная ректификация редко используются при разделении нефтяных фракций с целью последующего их анализа, однако широкое применение эти методы нашли в нефтепереработке и нефтехимии. Экстракцией в промышленности выделяют бензол, толуол и ксилолы из ката-лизатов риформинга бензиновых фракций [29], проводят селективную очистку масляных фракций [30], деароматизацню реактивных топлив [31]. Предлагается также"экстракционная очистка жидких нормальных алканов от примесей аренов [32, 33], выделение сульфидов [34] и т. д. [c.57]


Смотреть страницы где упоминается термин Очистка масляных фракций: [c.253]    [c.27]    [c.112]    [c.294]    [c.206]    [c.93]    [c.52]   
Смотреть главы в:

Производство смазочных масел из сернистых нефтей -> Очистка масляных фракций




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная очистка масляных фракций

Введение в технологию очистки масляных фракций Классификация смазочных масел

Очистка масляных фракций Краткий обзор развития процессов очистки масел

Очистка масляных фракций нефти

Очистка масляных фракций серной кислотой

Очистка фракции

Селективная очистка дистиллятных масляных фракций и деасфальтизата

Селективная очистка масляных фракций и деасфальтизатов

Селективная очистка масляных фракций и остатков

Способы очистки масляных фракций

Технология процессов селективной очистки масляных фракций и деасфальтизатов

Установка очистки нефтяных масляных фракций фенолом Сусанина)

Установка очистки нефтяных масляных фракций фурфуролом (Л. М. Маркова)

Химия процессов очистки масляных фракций нефти



© 2025 chem21.info Реклама на сайте