Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние межмолекулярного взаимодействия адсорбат — адсорбат

    Влияние межмолекулярного взаимодействия адсорбат — адсорбат [c.46]

    Определение из экспериментальных данных констант Генри, теплот адсорбции при нулевом заполнении, ряда изотерм адсорбции при разных температурах, зависимостей теплот адсорбции и теплоемкостей адсорбата от заполнения и сопоставление этих зависимостей с получаемыми из расчета для разных моделей адсорбционных систем дает важную информацию не только о влиянии межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат на термодинамические характеристики адсорбционной системы, но и о состоянии адсорбированного вещества. Помимо этого, уравнения [c.153]


    Коэффициент активности у отражает влияющие на характер изме-. нения Г с ростом с межмолекулярные взаимодействия адсорбат — адсорбат (действующие как вдоль поверхности адсорбента, так и перпендикулярно ей), а также влияние неоднородности поверхности. Постоянная же при данной температуре величина = при Г°7°=1, т. е. при некоторой определенной величине адсорбции Г°. При Г- О 7 1, так как при этом межмолекулярные взаимодействия адсорбат — адсорбат исчезают и остаются только межмолекулярные взаимодействия адсорбат — адсорбент. [c.133]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    Было изучено влияние потенциала антраценового электрода на адсорбцию масляной и капроновой кислот, которое достигалось изменением окислительно-восстановительного потенциала электрохимической системы, инжектирующей дырки в антрацен. С ростом окислительного потенциала адсорбционная способность исследованных кислот увеличивается. Это следует из зависимости В от окислительного потенциала, приведенной на рис. 6. На рис. 7 представлена зависимость а от потенциала электрода. Из рисунка видно, что межмолекулярное взаимодействие адсорбат — адсорбат линейно растет с увеличением окислительного потенциала. [c.120]


    В этом уравнении второй член учитывает влияние на )/а парных межмолекулярных взаимодействий адсорбат — адсорбат, а третий член учитывает влияние парных межмолекулярных взаимодействий адсорбат — газ-носитель. Рассмотрим возможное влияние этих взаимодействий на Ул в условиях газохроматографического определения К, а и оценим возможные погрешности в К1,а, вызванные пренебрежением влияния этих взаимодействий на Уа, 1. [c.46]

    Влияние межмолекулярного взаимодействия адсорбат — газ-носитель [c.50]

    Остаточная небольшая неоднородность поверхности обычных графитированных термических саж (дефекты и кислородные комплексы на гранях и между гранями полиэдрических частиц, возможные дислокации на гранях и места контактов между разными частицами) может несколько исказить начальный ход изотерм адсорбции и кривых, выражающих зависимость дифференциальной теплоты адсорбции от заполнения. Поэтому для получения констант адсорбционной системы, характеризующих межмолекулярные взаимодействия адсорбат — адсорбент и адсорбат — адсорбат на однородной поверхности, особенно важно производить обработку экспериментальных данных с учетом влияния на эти данные остаточной неоднородности поверхности. Эти вопросы рассматриваются в гл. IV. [c.54]

    В газовой хроматографии влияние элюента — газа-носителя часто может быть пренебрежимо мало, а нужные для использования в хроматографии достаточно слабые межмолекулярные взаимодействия адсорбата с неполярными и полярными адсорбентами сравнительно просты. Основной вклад в эти взаимодействия вносят универсальные неспецифические взаимодействия, а на ионных адсорбентах — также и ориентационные электростатические взаимодействия адсорбат — адсорбент. При достаточно высоких температурах колонны газового хроматографа вклады таких специфических и направленных взаимодействий, как водородная связь и комплексообразование, сильно зависящих от температуры, резко уменьшаются. Поэтому молекулярно-статистическая теория удерживания в газовой хроматографии на инертных однородных непористых адсорбентах с известной структурой, особенно на таких одноатомных адсорбентах, как обработанные водородом графитированные при 3000 °С термические сажи, может быть доведена до количественных расчетов константы Генри, если структура молекулы адсорбата известна. Однако структура сложных молекул часто неизвестна или недостаточно известна. В таких случаях, используя полученные с помощью хроматографии значения константы Генри, можно решать обратные молекулярно-статистические задачи — находить некоторые параметры структуры молекулы адсорбата. Решение [c.13]

    В жидкостной хроматографии имеются исключительно большие возможности управления селективностью разделения. В газовой хроматографии с практически неадсорбирующимся газом-носителем вещества разделяются за счет различий только неспецифических (в основном дисперсионных) межмолекулярных взаимодействий или суммы специфических и неспецифических межмолекулярных взаимодействий адсорбат — адсорбент. В жидкостной же хроматографии за счет влияния подвижной фазы удерживание веществ и селективность разделения может определяться значительно большим разнообразием различных видов межмолекулярных взаимодействий. Здесь можно реализовать случай, когда удерживание определяется преимущественно специфическим взаимодействием с адсорбентом при применении неполярного или слабополярного элюента (так называемый прямой вариант жидкостной хроматографии) или преимущественно неспецифическим взаимодействием с адсорбентом при применении полярного элюента (так называемый обращенно-фазовый вариант жидкостной хроматографии), а также их различными комбинациями. [c.217]

    Таким образом, поверхность чистой графитированной термической сажи в основном плоская и химически инертная. Наличие подвижных электронов, способных перемещаться вдоль графитовых слоев, не делает эту поверхность специфичной в отношении межмолекулярных взаимодействий при адсорбции. Вместе с тем изучение адсорбции на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов адсорбата, в частности атомов углерода в углеводородах разных классов. Этого пока не удается сделать при изучении объемных свойств углеводородов (например, сжимаемости газов или энергии решетки молекулярных кристаллов), так как здесь большой вклад в межмолекулярное взаимодействие вносят атомы водорода соседних молекул углеводородов. В случае же адсорбции при малых заполнениях чистой поверхности ГТС таких взаимодействий нет, поэтому оказывается возможным выявить влияние на адсорбцию электронной конфигурации атомов углерода в углеводородах. [c.17]

    Основная идея метода заключается в том, что среди макроскопических свойств вещества одними из наиболее чувствительных к геометрии молекул являются адсорбционные свойства, если адсорбция происходит на однородной плоской поверхности твердого тела при очень малом ее заполнении. В этом случае молекула адсорбируемого вещества (адсорбата) испытывает действие межмолекулярных сил только со стороны поверхности адсорбента, а не со всех сторон, как в сжатых газах, жидкостях, твердых телах, а также при адсорбции при больших заполнениях поверхности. Долгое время, однако, эта особенность проявления межмолекулярных взаимодействий в системе адсорбат — адсорбент не привлекала внимания исследователей. Это было связано, во-первых, с тем, что неоднородность поверхности традиционно применяемых адсорбентов (активные угли, ксеро-гели), маскировало влияние структуры молекул адсорбата, а во-вторых, с тем, что обычными статическими методами нельзя было исследовать адсорбцию наиболее интересных по структуре [c.180]


    ВЛИЯНИЕ НА ИСТИННЫЙ УДЕРЖИВАЕМЫЙ ОБЪЕМ АДСОРБАТА АДСОРБЦИИ И МЕЖМОЛЕКУЛЯРНОГО ВЗАИМОДЕЙСТВИЯ С ГАЗОМ-НОСИТЕЛЕМ ВЕЩЕСТВА-МЕТКИ, ИСПОЛЬЗУЕМОГО ДЛЯ ОПРЕДЕЛЕНИЯ МЕРТВОГО ОБЪЕМА КОЛОННЫ [c.61]

    Ле Розен еще в 1948 г. [125] изучал влияние температуры на скорость движения зон в интервале от 10 до 70 °С. Для изученных систем в области 20—35°С температура практически не влияла на скорость движения зон, а при температурах выше 35 °С движение зон значительно ускорялось. В работе [126] диапазон температур был расширен (от —50 до 200 °С) и было обнаружено, что для разных веществ в различных растворителях на колонне с силикагелем скорость движения зон с повышением температуры может увеличиваться, уменьшаться или оставаться практически постоянной. Это было объяснено образованием водородных связей адсорбент — адсорбат, адсорбент — растворитель и адсорбат — растворитель. В разд. 1 этой главы было показано, что конкурирующее взаимодействие растворителя с адсорбентом уменьшает адсорбцию растворенного вещества взаимодействие растворенного вещества с растворителем также уменьшает его адсорбцию, поэтому энергия адсорбции растворенного вещества зависит от суммарного действия этих трех эффектов и относительного влияния каждого из них. В зависимости от того, как изменяется каждый из этих трех видов межмолекулярных взаимодействий с температурой, влияние температуры на удерживаемые объемы растворенных веществ будет различным. [c.240]

    Влияние природы поверхности адсорбента. Химическая природа поверхности адсорбента является основным фактором, влияющим на селективность разделения. Для предсказания характера межмолекулярных взаимодействий можно воспользоваться классификацией адсорбентов и молекул адсорбатов (стр. 399) по их способности к неспецифическому межмолекулярному взаимодействию. При этом следует учитывать взаимодействие молекул [c.415]

    Зависимость адсорбции на ионных адсорбентах от электрических моментов молекул. Кристаллические непористые и тонкопористые ионные адсорбенты, катионированные цеолиты. Влияние на адсорбцию цеолитами полярности молекул, радиуса и заряда катионов, степени ионного обмена, декатионирования и деалюминирова-ния. Межмолекулярные взаимодействия адсорбат — адсорбат в полостях цеолита и влияние температуры на состояние адсорбированного вещества. Особенности адсорбции воды. Применение цеолитов в хроматографии. [c.28]

    На рис. 2.4 сопоставлены зависимости Дифференциальной теплоты адсорбции ксенона 5 на поверхности непористого неспецифического адсорбента ГТС и в полостях цеолита Ь1МаХ от адсорбции. В обоих случаях теплота адсорбции увеличивается с ростом адсорбции. Это показывает, что при адсорбции катионированным цеолитом вклад межмолекулярных взаимодействий адсорбат — адсорбат в общую энергию адсорбции ксенона превышает влияние неоднородности адсорбционных центров внутри поло - й неолита. [c.33]

    Рассмотрим теперь причины селективности силикагеля с гидроксилированной поверхностью при элюировании неполярным элюентом в отношении алкилпроизводных ароматических углеводородов. В этих углеводородах заместители, во-первых, изменяют распределение электронной плотности в ароматическом ядре молекулы, т. е. изменяют ее специфическое взаимодействие с адсорбентом. Во-вторых, они могут по-разному влиять на неспецифическое межмолекулярное взаимодействие адсорбат — адсорбент и адсорбат— элюент, а следовательно, и на ориентацию молекул адсорбата. Алкильные заместители в алкилбензолах, хотя и не сильно, но по-разному влияют на распределение электронной плотности в бензольном кольце и, следовательно, могут по-разному изменять специфическое межмолекулярное взаимодействие бензольного кольца с гидроксильными группами поверхности силикагеля. В н-алкилзамещенных бензола изменение влияния алкильного заместителя на распределение электронной плотности в бензольном кольце при удлинении алкильной цепи быстро становится незначительным. Однако в этом случае про исходит увеличение вклада неспецифических межмолекулярных взаимодействий не только адсорбат — адсорбент, но и адсорбат — элюент, т. е. взаимодействий алкильной цепи молекул замещенных ароматических углеводородов с молекулами неполярного элюента — к-гексана. Поэтому заместители влияют на ориентацию таких молекул на поверхности. [c.287]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    НИЯ значений Л", для адсорбции на ГТС опорной молекулы данного класса соединений, рассчитанных из свойств адсорбата и адсорбента, взятых в отдельности [т. е. из соответствующих величин а и X, введенных в приближенную квантово-механическую формулу (9.39), и величин г о, введенных в сумму (9.40)], с экспериментальными значениями К. Это делает расчеты значений К для адсорбции на ГТС других молекул данного класса иолуэмпирическими, но зато позволяет подойти количественно к выяснению вопроса о возможности переноса исправленных так атом-атомных потенциалов ср на другие соединения того же класса, а также к установке влияния на межмолекулярное взаимодействие изменения электронной конфигурации атомов молекулы адсорбата при переходе от одного класса адсорбатов к другому. Исправленные так полуэмпирические атом-атомные потенциалы межмолекулярного взаимодействия ф уже можно рассматривать как удобный инструмент для количественного изучения влияния структуры молекул адсорбата на их адсорбционные (хроматографические) свойства. [c.171]

    Следует отметить, что влияние электронной конфигурации атомов в молекуле на межмолекулярное взаимодействие не было выявлено при исследовании методом атом-атомных потенциалов межмолекулярных взаимодействий в молекулярных кристаллах углеводородов или в реальных газах, В этих случаях большое значение лмеет потенциал фн... н, поскольку на периферии молекул углеводородов расположены атомы водорода. При адсорбции же малых доз углеводородов на ГТС взаимодействием адсорбат — адсорбат можно пренебречь, так что потенциал фн...н в расчет К не входит. [c.175]


Смотреть страницы где упоминается термин Влияние межмолекулярного взаимодействия адсорбат — адсорбат: [c.183]    [c.4]    [c.52]    [c.33]    [c.199]    [c.201]    [c.106]   
Смотреть главы в:

Молекулярные основы адсорбционной хром аграфии -> Влияние межмолекулярного взаимодействия адсорбат — адсорбат




ПОИСК





Смотрите так же термины и статьи:

Адсорбат

Взаимодействие межмолекулярное

Межмолекулярные



© 2025 chem21.info Реклама на сайте