Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Величина поверхности определение по адсорбции газов

    Простейшим методом определения размера и формы относительно крупных частиц является оптический микроскопический метод. Нижний предел радиусов, поддающихся определению этим способом, около 2000 А. К более старым методам определения частиц меньшего размера (которые могут давать существенный вклад в величину поверхности и каталитической активности порошка) относится суспендирование их в жидкости и измерение скорости их седиментации или установления равновесия под действием силы тяжести или при центрифугировании. Эти методы трудоемки, но дают хорошие результаты для распределения частиц по радиусам. Другим реже используемым способом является измерение величины поверхности по адсорбции газа и расчет среднего радиуса на основе допущения о форме частиц. Гораздо более прямые и полезные сведения можно получать при изучении рассеяния рентгеновских лучей под малыми углами, используя электронный микроскоп и исследуя расширение дифракционных линий на рентгенограммах, полученных под большими углами. [c.166]


    Следует заметить, что помимо возможной конкурентной адсорбции растворителя, такие расчеты затруднены еще по следующим причинам. В большинстве работ для характеристики адсорбента применяют методы, основанные на определении удельных поверхностей путем адсорбции газов или некоторых органических соединений. Далее предполагается, что найденная таким образом площадь представляет собой величину той поверхности, на которой сорбируется полимер. [c.10]

    Выяснение вопроса о механизме адсорбции на поверхности раздела жидкость — твердое тело требует измерения ее величины на адсорбентах с известной поверхностью, которую обычно определяют двумя методами адсорбцией газа по Брунауэру — Эмметту — Теллеру [80] или адсорбцией из растворов, например стеариновой кислоты из бензола [97]. Оба метода для непористых адсорбентов дают обычно идентичные результаты, но в случае пористых адсорбентов, например окиси алюминия или угля, величина поверхности, определенная по адсорбции из растворов, часто оказывается меньше [98]. [c.249]

    ЦИИ до давления насыщения. Изотермы адсорбции 10 разных газов на 10 различных промотированных и непромотированных железных катализаторах показали, что максимальные отклонения величин поверхности, определенных по точке В, от среднего составляют от 3 до 12%. Для точки А соответственно [c.391]

    Количество газа, адсорбируемого в результате физической адсорбции, много больше, чем при хемосорбции. Химическая адсорбция происходит только на определенных активных центрах, которые представляют собой незначительную часть поверхности адсорбента. Для физической адсорбции имеет значение только величина поверхности адсорбента, на хемосорбцию оказывает влияние физическое состояние поверхности и ее химический состав. [c.219]

    Величина удельной поверхности пористого тела, определенная по методу адсорбции, зависит от минимальных размеров его пор, в которые может еще проникать адсорбируемое вещество. Вследствие того, что размеры молекул газа изменяются в небольших пределах, этот метод для различных газов дает близкие величины. При определении удельной поверхности по методу адсорбции из растворов получают данные, различающие- ся иногда даже по порядку величин. Это можно объяснить тем, что размеры частиц растворенных веществ, используемых в адсорбционных опытах, изменяются от молекулярных и ионных до коллоидных. С увеличением размеров частиц растворенного вещества возрастает радиус пор, доступных для адсорбции, и поверхность пор с меньшим радиусом окажется неучтенной. Таким образом, различие в измеренных величинах удельной поверхности по адсорбции растворенных веществ наиболее заметно для тонкопористых объектов. [c.72]


    Уравнение Лэнгмюра вполне удовлетворительно описывает зависимость величины адсорбции от концентрации. Из уравнения следует, что существует предел адсорбции, т. е. увеличение концентрации раствора выше определенного значения не приводит к дальнейшему увеличению количества адсорбированного вещества. Изотермы адсорбции Лэнгмюра по своему виду аналогичны как изотермам адсорбции газов и паров, так и изотермам адсорбции из растворов. На процесс адсорбции молекул из жидких сред оказывает влияние присутствие растворителя, молекулы которого, адсорбируясь на поверхности сорбента, уменьшают адсорбируемость растворенного вещества, что искажает изотерму адсорбции. Поэтому следует подбирать растворитель с наименьшей сорбционной способностью по отношению к применяемому адсорбенту. В случае сорбции поляризованных молекул образуются последовательно вторичный и последующие адсорбционные слои. Изотерма адсорбции имеет 8-образную форму. В этом случае с увеличением концентрации вещества адсорбция его возрастает. [c.12]

    У частиц аэрозолей нет двойного электрического слоя, но в определенных условиях они приобретают электрический заряд. Заряд частиц аэрозолей может появиться в результате трения при их распылении или вследствие адсорбции на поверхности частиц ионов газов, образующихся под действием космического излучения. В отличие от обычных коллоидных растворов, где заряд частиц обусловлен адсорбцией ионов электролита и определяется равновесием между частицей и окружающей средой, у аэрозолей заряд частицы большей частью случаен. В общем все-таки наблюдается закономерность между дисперсностью и величиной заряда заряд частицы аэрозоля тем больше, чем больше ее размеры. [c.350]

    Несмотря на несомненные достоинства этой методики необходимо, однако, отметить, что в условиях проведения химической реакции углерода с газами нельзя отождествлять величину удельной поверхности, определяемую низкотемпературной адсорбцией газов, с величиной реакционной поверхности, фактически участвующей в процессе реагирования. С другой стороны, следует также отметить, что до сих пор нет методики прямого определения истинной реакционной поверхности твердого вещества. [c.23]

    В этой книге мы хотели показать, как данные адсорбции на мелкозернистых и пористых твердых телах используются для определения их удельной поверхности и распределения пор по размерам. Большая часть книги посвящена методу Брунауэра— Эммета—Теллера (БЭТ) определения удельной поверхности и применению уравнения Кельвина для расчета распределения пор по размерам. Необходимая доля внимания уделена также и другим хорошо известным методам оценки удельной поверхности по данным измерений величины адсорбции, а именно методам, в основу которых положены адсорбция из растворов, теплота смачивания, хемосорбция, и методу, основанному на применении уравнения адсорбции Гиббса к адсорбции газов. [c.7]

    Для оценки удельной поверхности, а с ее помощью и размеров частиц часто применяется адсорбция растворенного вещества из раствора, особенно адсорбция красителей. При более простой по сравнению с адсорбцией газов экспериментальной постановке этого метода его теоретическое рассмотрение настолько осложнено адсорбцией растворителя, что применимость этого метода значительно сужается. Детальные причины этого будут выяснены в гл. 7. Явления, происходящие на границе раздела между жидкостью и твердым телом, используются в методе определения удельной поверхности по теплоте смачивания. Этот метод трудно осуществим экспериментально, если удельная поверхность не достигает значительной величины, порядка десятков квадратных метров на грамм. Метод определения удельной поверхности по теплоте смачивания рассматривается в гл. 7. [c.34]

    СТИ, определенные этим методом, с величинами, полученными по методу адсорбции газа. Однако необходимо иметь в виду, что значения площади поверхности, рассчитанные на основании распределения частиц по размерам (которое определяется по данным электронной микроскопии), могут быть ошибочными, если определения проводятся недостаточно тщательно. [c.85]

    Точность определения поглощения газа м зависит от того, насколько суммарное количество поглощенного газа отличается от количества оставшегося неадсорбированного газа и от количества, которое адсорбируется (при физической адсорбции) на стенках сосуда, имеющего ту же температуру, что и образец. Поэтому при прочих равных условиях точность снижается с уменьшением удельной поверхности образца. При физической адсорбции проблему, связанную с оставшимся в мертвом объеме газом, можно до некоторой степени устранить, если использовать адсорбат с более низким значением ро, который сильнее адсорбируется и снижает тем самым равновесное давление над образцом. Преимущества ксенона при 90 К и криптона при 77 К очевидны (ср. табл. 1). Поправку на адсорбцию охлаждаемыми стенками сосуда с образцом вводят по результатам холостого опыта. Величина этой поправки зависит ие только от соотношения поверхностей сосуда и образца, ио и от прочности связывания на них адсорбата. Например, теплота адсорбции ксенона или криптона (которые обычно используют для образцов с низкой удельной поверхностью) на переходных металлах больше, чем на стекле, так что при 77—90 К степень покрытия поверхности стекла при одинаковом равновесном давлении составляет только 10—15% степени покрытия поверхности чистого металла. Прочность связывания адсорбата иа окислах и на стекле значительно ближе. Минимальная поверхность, которую можно достаточно точно измерить, зависит от формы образца, так как последняя влияет иа величину мертвого объема. [c.340]


    Величина поверхности навески катализатора является важнейшим фактором, определяющим ее активность, и поэтому путаница относительно активности различных препаратов возникла из-за отнесения ее к единице веса, а не к единице площади поверхности. Только недавно стало очевидным, что удельная поверхность данного катализатора сильно меняется в зависимости от способа получения и последующей истории образца катализатора. К счастью, был разработан относительно простой и точный метод измерения удельной поверхности катализаторов по физической адсорбции газа вблизи температуры его кипения, и теперь определение величины поверхности стало обязательной частью любого исследования каталитической активности [39]. Однако в отдельных частных исследованиях и при проверке газо-адсорбционного метода оказались полезными также другие методы, которые ниже будут кратко описаны. Все эти методы удобно разделить на две группы к первой из них относятся методы, оставляющие поверхность неизмененной и пригодной для дальнейшего изучения. Вторая группа включает методы, действующие на поверхность твердого тела таким образом, что ее приходится регенерировать или проводить дальнейшие исследования на параллельной навеске. [c.167]

    Остроумное использование проточной системы для определения величины и скорости адсорбции на проволоке, которую при этом легко нагреть или охладить, описали Бекер и Хартман [100, 101]. Их прибор, изображенный на рис. 45, состоит из большой (около 2,3 л) колбы с помещенной в нее вольфрамовой лентой 2 с поверхностью 2,3 см и соединенной с ионизационным манометром 1. Газ, [c.222]

    Основная область научных работ — теория катализа. Положил начало (1920-е) изучению кинетики каталитических реакций, происходящих на поверхности раздела жидкость — газ. Предложил (1928) один из методов определения удельной поверхности твердых тел. Установил условия активированной адсорбции и величины энергии активации для разных адсорбентов и адсорбатов. Экспериментально проверяя теорию поверхностных активных центров катализаторов, выдвинутую X. С. Тэйлором, нашел (1930-е) случаи как широкой неоднородности поверхности, так и каталитически однородной. [c.428]

    Разработанные нами методы основаны на предположениях, что удельная адсорбция газов — величина постоянная, не зависящая ни от дисперсности активного вещества, ни от контактирования его с другими фазами. Независимость удельной адсорбции от дисперсности окиси и закиси меди доказана нами экспериментально (см. табл. 2 и 3). Непосредственно проверить, не изменяется ли величина адсорбции в местах контактирования активного вещества с носителем, весьма трудно. Косвенное подтверждение правильности этого предположения получено в работе [И]. В этой работе авторы определили размер частиц платины, нанесенной на у-АЬОз по хемосорбции водорода, предполагая, что удельная адсорбция на платиновой черни и на нанесенной платине имеет одно и то же значение. Полученные результаты полностью совпали с рентгенографическими измерениями, что свидетельствует о правильности сделанного предположения. Поэтому при нанесении окиси и закиси меди на тот или иной носитель можно ожидать, что адсорбционные свойства их не изменятся. Однако в случае совместного присутствия окиси и закиси меди на носителе нельзя категорически утверждать, что в местах контакта СиО/СигО адсорбционные свойства такие же, как и на чистых окислах. Поэтому определения поверхности окиси и закиси меди при их совместном присутствии несколько относительны. [c.175]

    На основании полученных данных разработаны методы определения величины поверхности окиси меди по хемосорбции окиси углерода и закиси меди по хемосорбции кислорода. При совместном присутствии окиси и закиси меди на поверхности катализатора поверхность их можно определять, измерив адсорбцию обоих газов.  [c.176]

    В заключение с.ледует отметить, что метод адсорбции газов может быть применен для определения средней величины частиц только в том случае, если частицы гладкие и не имеют внутренних поверхностей. При определении поверхности тонкоизмельченного вещества метод адсорбции газов дает гораздо более точные результаты и требует гораздо меньше времени, чем микроскопический метод. С другой стороны, если представляет интерес величина частиц, лучше применять микроскопические методы. [c.405]

    Некоторое количество тонких пор имеется в каждом пористом адсорбенте, поэтохму каждый из них проявляет в той или иной степени нерсорбционные свойства. В гл. IX было показано, что величина поверхности, определенная по методу адсорбции газов или красителе , всегда является функцией размера молекул того вещества, которым пользовались, проводя это измерение. Более крупные молекулы дают меньшую величину поверхности, конечно, потому, что не могут проникнуть внутрь наиболее тонких [c.494]

    Вероятно, для всех адсорбентов в известной степени имеет место персорбция. Это обнаруживается при определении величины поверхности по адсорбции молекул различных размеров. Так, Брунауер и Эммет[1 ] нашли, что поверхность силикагеля, определенная по адсорбции бутана, на 22,5% меньше средней величины, полученной по изотермам адсорбции пяти газов с меньшими молекулами (аргон, азот, кислород, окись углерода и углекислый газ). Для исследованного образца угля получилось еще большее различие, которое составляло 34%. Хотя площадь, занимаемая бутаном [c.504]

    Следует обратить внимание на то, что при определении поверхности любыми адсорбционными методами конечный результат зависит от специфических свойств молекул адсорбата (их размеров, конфигурации и т. п.). Например, при адсорбции красителей определяемая величина поверхности почти всегда меньше, чем при определении поверхности по адсорбции газа, так как большие молекулы красителя неспособны проникать в узкие поры. Кроме того, площадь, занимаемая одной -какой-либо адсорбированной молекулой на поверхности адсорбента, зависит не только от свойств самой молекулы, но и от специфических свойств поверхности адсорбента. Для одной и той же молекулы различия площади при адсорбции на разных адсорбентах могут составлять 20—30% и более. Эти обстоятельства следует учитывать при обсуждении результатов определения поверхности адсорбционными методами. [c.262]

    Во время регенерации возможно протекание нескольких процессов а) десорбция кислорода или разложение окисла б) рекристаллизация или изменение концентрации металла на поверхности раздела и в) растрескивание слоя окисла, обусловленное неудачным расположением окисла, первоначально образовавшегося на атомах поверхности металла. Так как при регенерации не наблюдалось ни выделения газа, ни потери в весе, возможность десорбции кислорода исключена. Значительных изменений величины поверхности, определенной по адсорбции аргона, во время различных стадий окислительно-реге-нерационных процессов не происходило. Таким образом, разрушение поверхности маловероятно. [c.478]

    Величина dys отличается от среднего диаметра, определенного с помощью величин поверхности и объема по Хейвуду (см. ниже), который рассчитывается суммированием распределения и зависит от метода измерения. Отношение этих двух диаметров можно использовать для оценки истинной поверхности порошка из данных по распределению частиц по размерам Эти величины будут зависеть от метода измерения, так как величина поверхности, определенная по методу, который основан на проникновении газа, как правило, меньше, чем определенная из данных по адсорбции газа. [c.90]

    Методы оиределения поверхности активных компонентов сложных катализаторов основаны на эффекте избирательной хемосорбции, когда контактирующий с катализатором газ-адсорбат адсорбируется только на исследуемом компоненте, а на всех остальных его адсорбция минимальна. Впервые раздельное определение величины поверхности активных компонентов было проведено Р. X. Бурштейп для платины иа угле и Эмметом и Брунауэром для железа в катализаторе синтеза аммиа-ка . [c.87]

    Как установлено из опытов, величины 5о различаются в зависимости от способа определения — по проницаемости жидкости (фильтрование), проницаемости газа, адсорбции газа, термограммам сушки [444], — что связано с физической сущностью этих способов. Так, при определении 5о по адсорбции газа отражается влияние пове >хности пор, недоступных для движения жидкости, а термограммы сушки показывают до некоторой степени условную величину поверхности частиц, связанной с пленкой жидкости. [c.154]

    Быстрый, хотя и приближенный, метод определения адсорбции воздуха описан Хайнсом [29]. По этому методу величину адсорбции вычисляют, измеряя понижение давления в данном объеме воздуха, первоначально находившегося при атмосферном давлении в контакте с образцом адсорбента, в результате охлаждения последнего до —183°. Перед измерениями адсорбент следует высушить путем нагревания, но можно обойтись без его откачки. Вследствие сложности процесса адсорбции многокомпонентной газовой смеси установку необходимо прокалибровать с помощью стандартного метода адсорбции азота. Более изящная установка, предназначенная для измерения адсорбции азота без предварительной откачки адсорбента, описана Хаулем и Дюрбгеном [30]. Такая установка выпускается серийно. Две стеклянные ампулы, одна из которых служит компенсатором объема, а в другую помещают исследуемый образец, отделены друг от друга дифференциальным манометром. Количество адсорбированного газа вычисляется по разности давлений и из исходного давления. Установка позволяет создавать такие равновесия давления, которые отвечают условию применимости уравнения БЭТ, и, таким образом, оценка величины удельной поверхности по одной точке дает значения лишь на 10% меньше полученных в результате многочисленных измерений, а воспроизводимость данного значения 5 обычно < 1%. Изменяя исходное давление газа в установке, можно получить серию адсорбционных точек и, следовательно, начертить изотерму адсорбции в интервале применимости уравнения БЭТ. Для удаления предварительно адсорбированных примесей в этой установке вместо откачки используется продувка адсорбента сухим азотом, что позволяет избежать внезапного выброса тонкоизмельченного образца. Установка позволяет определить удельные поверхности твердых тел в интервале от 0,3 до 1000 г- . [c.367]

    Адсорбционные методы определения удельных поверхностей твердых тел обычно основываются на возможности определения емкости заполненного монослоя с последующим использованием уравнения 5 = (лаНа, где 5 — величина удельной поверхности, со — молекулярная площадка, а — адсорбция, На — число Авогадро. Сравнивая методы определения удельных поверхностей, основанные на адсорбции газов (наров) и жидких растворов, следует отметить ряд преимуществ и недостатков каждого метода. [c.122]

    Хорошо известно, что пористые массы силикагеля или окиси алюминия можно получить высушиванием гелей этих окислов, и они часто используются в качестве носителей для металлов. Металлы, на которые едкие щелочи не действуют, можно приготовить в виде очень пористых масс, сплавляя с алюминием и выщелачивая алюминий едкой щелочью. Огромное увеличение поверхности, достигаемое при этом, иллюстрируется приготовлением [33] никеля Ренея из сплава с удельной поверхностью 0,4 м /г. Путем экстраполяции кривой время выщелачивания — поверхность величина последней непосредственно после приготовления препарата найдена равной приблизительно 142 /г, по данным определения физической адсорбции газа по методу точки В , описанному в ближайшем разделе. Адсорбционные кривые, изображенные на рис. 26 с указанием точки В для каждой из них, показывают, что поверхность уменьшается при старении, по-видимому, в результате медленного роста кристалликов большего размера за счет более мелких. [c.165]

    К пористым катализаторам относятся активированные угли, активированные глины, силикагель, никель Ренея и таблетированные порошки. Необходимо иметь представление об объеме, занимаемом порами, о величине внутренней поверхности пор, их среднем радиусе и о распределении объемов пор и величины поверхности по порам различных радиусов. Комбинируя измерения адсорбции газов с измерениями, фактически являющимися определением плотности твердых тел, можно получить сведения о порах всех размеров, вплоть до пор, имеющих радиус, равный нескольким ангстремам. Измерение адсорбции газов особенно полезно для изучения пор с малыми радиусами — менее 100 A, тогда как более крупные поры можно изучать, вдавливая жидкость под давлением в них. [c.172]

    ОКИСИ алюминия) железный катализатор с окисью углерода при различных давлениях и измеряли полную адсорбцию (включающую хемосорбцию и физический слой, расположенный выше). В каждом случае при иагревании до 0° физический слой удалялся и оставался только хемосорбированный слой, так что при повторном охлаждении до —183° и адсорбции количество поглощенного газа служило мерой физической адсорбции. Разность между полной и физической адсорбцией (см. рис. 67, две нижние кривые) давала величину хемосорбции. Таким образохм, здесь производилось два определения —объема газа, необходимого для заполнения монослоя (см. стр. 169— 170), давшее совпадающие результаты и позволившее сделать предположение, что все поверхностные атомы железа хемосорбируют окись углерода. Однако в случае одно- или дважды промотированного катализатора площадь хемосорбиро-вавшей поверхности (железо) была меньше полной поверхности, хотя обе они и превышали поверхность непромо-тированного катализатора (табл. 33). Около 60% поверхности приходилось на долю промоторов и только около [c.299]

    В адсорбционных исследованиях по методу БЭТ размер образца необходимо выбирать так, чтобы величина поверхности находилась в области оптимальной точности, даваемой установкой. В большинстве установок с использованием фиксирован нижний предел измеряемой поверхности. Верхний предел в большинстве установок определяется размером емкостей для хранения адсорбируемого газа, а в статическом методе еще и дозирующей системой, а также другими факторами. Например, при наличии в системе 20 см азота можно точно определить поверхность, не превышающую 30 м (некоторые специальные устанобки не имеют верхнего предела). В динамическом методе БЭТ объем адсорбированного газа не является критическим фактором, хотя На точность контроля поглощения в соответствующих электрических цепях могут влиять переключения при сравнении с Однако, используя трубки с предварительно калиброванными объемами, можно собрать систему таким образом, чтобы минимизировать число переключений контролирующей системы. В тех случаях, когда не удавалось оценить поверхность образца, Файт и Уиллин-гам [ 11] рекомендуют использовать образец весом 0,5 г с исходной заправкой 30 см азота. В таких условиях бюретки с общим объемом в 1 см (так же, как у Джойнера) достаточно для определения поверхностей размером 10 - 500 м г 1. В крайнем случае пробный опыт даст оценку адсорбционной емкости образца. Во всех исследованиях адсорбции образцы не должны содержать влаги, растворителей и ранее адсорбированных газов. Обезгаживание в вакууме обычно занимает около 3 ч и, как правило, выполняется при нагревании. Температура обезгаживания зависит от природы образца. Некоторые образцы разлагаются или изменяют свои свойства при нагревании выше некоторого предела. Например, электроды из гидроокиси никеля обычно не нагревают выше 60° С, хотя большинство образцов обез-гаживают при температурах 95- 110°С. Однако в случаях, когда образцы находились в контакте с органическими веществами, такими. [c.319]

    Величину наиболее часто применяемых адсорбатов находят, исходя из их плотности в йуидком и твердом состояниях или по адсорбционным данным [21, 22]. В настоящее время широко применяемым адсорбатом для определения удельной поверхности является азот. Однако наличие заметного постоянного квадрупольного момента молекул азота служит причиной расхождений при измерениях поверхности по адсорбции азота и других газов, например криптона, аргона. Так, М. Г. Кага-нер [22] предлагает взять в качестве исходной величины площадь молекулы одноатомного аргона, не зависящую от вида поверхности, вычисленную по плотности жидкости при 90° К и равную 14,4 А 2. [c.390]

    Адсорбционные определения величины удельной поверхности как пористых, так и непористых сорбентов и катализаторов сводятся к построению изотерм адсорбции газа и пара на сорбенте и вычислению величины удельной поверхности, обычно применяя уравнение изотерм адсорбции Брюнауэра — Эммета — Теллера, справедливое в определенном интервале давлений [c.106]

    После того как Лэнгмюром была установлена адсорбпия с образованием мономолекулярных слоев, у некоторых исследователей возникла идея использования хемосорбции как метода измерения величины поверхностей. Так, Бентон [2], Де-Бур и Диппель [3] еще в 20-х годах предприняли попытку посредством хемосорбции окиси углерода, водорода и водяных паров определить величину поверхности платины [2] и фтористого кальция [3]. Однако результаты, как выяснилось позже, оказались неточными. Это понятно, потому что метод хемосорбции может быть применен для этих целей лишь в случае однородной поверхности, когда каждый произвольно выбранный участок адсорбента поглощает строго определенное число молекул газа, равное адсорбции на любом другом участке. При неоднородных поверхностях, которые для катализаторов характерны, адсорбция протекает иначе, и указанный метод становится непригодным. [c.162]

    Для изучения величины поверхности и пористой структуры твердых тел применяют метод адсорбции паров и газов. Этот метод наиболее точен и относительно прост в экспериментальном оформлении по сравнению с другими (например, методом электронной микро скооии, определением теплот смачивания, теплопроводности и др.). [c.44]

    Согласно теории полимолекулярной адсорбции физическая адсорбция газов и паров в первом слое определяется двумя факторами чистой теплотой адсорбции и поверхностью адсорбента. Иногда газ обладает чрезвычайно различными энергиями взаимодействия с разными адсорбентами например, чистая теплота адсорбции воды на ионных кристаллах положительна, в го время как на угле отрицательна. В таких случаях получаются изотермы различного типа, как это уже обсугкдалось в гл. VI. Однако большинство газов обладает поло кительнЫх ш чистыми теплотами на всех адсорбентах, и теплоты адсорбции данного газа на различных адсорбентах примерно одни и те же, как мы это видели в главах VII и VIII. Это является причиной того, что решающим фактором в физической адсорбции является не природа адсорбента, а величина его поверхности. В настоящей главе мы обсудим различные методы, которые были предложены для определения поверхности адсорбентов. [c.367]

    В противоположность методу адсорбции газов, метод теплот смачивания не требует никаких предположений относительно упаковки молекул на поверхности адсорбента. С другой стороны, этот метод требует некоторых иных предположений, вносящих элементы недостоверности. В первую очередь предполагается, что поры между частицами порошка, служащие капиллярными трубками, остаются постоянными по своим размерам в течение трех определений давлений вытеснения. Мак-Бэном было установлено, что это не совсем верно. Затем при выводе уравнения (16) предполагается, что К а не зависит от температуры. Поскольку, согласно уравнению (17), зависит от трех величин [c.417]

    Метод Бартела и Фу позволяет измерять лишь ту часть поверхности пористого вещества, которая доступна крупным органическим молекулам, примененным при определении теплот смачивания. Опыты по адсорбции газов показали, что бутан дает меньшие удельные поверхности как для угля, так и для силикагеля, чем азот или другие вещества с малыми молекулами. Большие величины удельной поверхности, полученные для силикагеля с водой, по сравнению с величинами, найденными четырьмя органическими веществами и приведенными в табл, 48, можно приписать меньшей величине молекул воды. [c.418]

    Основным недостатком метода является его большая сложность, в особенности по сравнению с методом адсорбции газов. Тем не менее, поскольку метод теплот смачивания дает вполне точные величины поверхностей, представляло бы интерес сравнение этих двух методов при применении одного и того же адсорбента для сбоих определений, [c.418]


Смотреть страницы где упоминается термин Величина поверхности определение по адсорбции газов: [c.171]    [c.448]    [c.273]    [c.447]    [c.655]    [c.151]    [c.307]    [c.372]    [c.403]   
Гетерогенный катализ (1969) -- [ c.79 , c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция газов

Адсорбция определение

Определение поверхности



© 2024 chem21.info Реклама на сайте