Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ион-парная влияние

    О катализирующем влиянии металлических поверхностей на процесс окисления масел известно давно. Наиболее активно ускоряют окислительный процесс медь, свинец и их сплавы, марганец, хром несколько меньше — железо, олово. Относительно слабо катализируют окисление цинк и алюминий. Следует также иметь в виду, что активность перечисленных металлов может меняться в зависимости от конкретных условий, в которых идет окисление. Например, алюминий, известный своей малой активностью как катализатор окисления масел, при удалении с его поверхности оксидной пленки оказывается, наоборот, одним из наиболее активных металлов [100]. При окислении масел в присутствии парных катализаторов (например, железа и меди), процесс ускоряется в большей степени, чем при использовании тех же катализаторов в отдельности. На рис. 2.17 показано влияние одновременного присутствия меди и железа на окисление белого масла [100]. [c.76]


    Вблизи боковых стенок в пограничном слое скорость, а вместе с ней и центробежная сила уменьшаются до нуля. В этих слоях под влиянием разности давления среда устремляется от периферии к центральной части. За счет этих масс, перетекающих у стенок от периферии к центру, в средней части канала образуется течение в обратном направлении — из центральной части к периферии. Появляется так называемый парный вихрь в меридиональной плоскости, который вызывает дополнительные потери. Влияние этих явлений на суммарную характеристику концевой ступени пока не изучено. Следует полагать, что это влияние может быть различным в зависимости от общего уровня скоростей и от конструктивных особенностей улитки. [c.240]

    На выход асфальтенов наибольшее влияние оказывает температура и в меньшей степени продолжительность процесса, заметна роль парных взаимодействий и отсутствует тройное взаимодействие факторов. Максимум концентрации асфальтенов (36% масс.) достигается при концентрации моногидрата 29,2% масс., температуре и продолжительности процесса 60°С и [c.159]

    На контраст сканирующего изображения в РЭМ решающее влияние оказывают топография поверхности объекта и его химический состав. Поскольку количество отраженных электронов зависит от химического состава и микрорельефа (топографии) поверхности, то можно получить два соответствующих изображения 1) распределение химических элементов по поверхности образца 2) микрорельеф поверхности образца. Получение изображения осуществляется с помощью специальных парных детекторов отраженных электронов по принципу, изображенному па рис. 61. Образец / состоит из нескольких частей разного химического состава. Детекторы А и Б. расположенные симметрично к падающему пучку электронов С, будут фиксировать равное количество отраженных электронов и давать синхронные сигналы на регистрирующую систему (линии а и 1в). При движении пучка на экране получится изображение, согласующееся с характером изменения химического состава материала. Наоборот, образец II химически однороден, но имеет неровную поверхность. Это приводит к несимметричному отрал<ению электронов от разных точек поверхности. Следовательно, в детекторы А Б будут попадать разные количества отраженных электронов и их выходные сигналы будут различными по фазе (линии Па и IIб)- При вычитании этих сигналов будет исключаться влияние химического состава вещества и полученная разность (линия Па-б) даст изображение микрорельефа поверх- [c.150]


    Повышение ионной силы водной фазы приводит к уменьшению числа образующихся ионных пар из-за конкуренции буферных ионов с противоионом за образование ионной пары. Поэтому повышение ионной силы в ион-парной хроматографии приводит к снижению к при разделении на обращенной фазе и к повышению к при разделении на нормальной фазе. Влияние буферных ионов возрастает в последовательности М02-<Вг-<.С1-<304 -. Селективность растворителя в ион-парной хроматографии изменяется по тем же правилам, как и в случае распределительной жидкостной хроматографии. [c.78]

    Влияние температуры имеет в ион-парной хроматографии большое значение. При использовании механически удерживаемых неподвижных фаз колонка должна быть термостатирована. В ион-парной хроматографии применяют обычно фазы с повышенной вязкостью, а повышение температуры снижает ее. Зависимость селективности от температуры также наиболее выражена в ион-парной хроматографии. [c.80]

    Уравнение (2.4) учитывает влияние самих исследуемых параметров на результат процесса У и влияние на У возможных эффектов взаимодействия (как парных эффектов, так и тройного эффекта). [c.52]

    Как следует из данных табл. 2.3, при генерирующем соотношении ЛГ4=Д 2Л 2Х коэффициенты/1 ,/1 и/li учитывают смешение с эффектами тройного взаимодействия и достаточно достоверны, еще выше уровень достоверности коэффициента Ао, смешанного с эффектом четверного взаимодействия, но коэффициенты, учитывающие влияние парных взаимодействий, рассчитаны недостаточно точно, так как парные взаимодействия смешаны между собой. [c.58]

    Дается систематический обзор современных результатов по дисперсионному — обычному и запаздывающему — взаимодействию в капиллярных системах. В качестве исходного для микроскопической теории используется представление о молекулярной природе капиллярных систем и о межмолекулярных силах. Последовательное молекулярно-статистическое описание капиллярных систем строится на большом каноническом ансамбле Г иббса. Для этого используется метод производящего функционала, позволяющий компактно и замкнуто вывести необходимые общие соотношения статистической механики. Решение основополагающей проблемы о влиянии среды на взаимодействие молекулярных объектов достигается как строгий результат исследования коллективных явлений в системах многих молекул. Этот результат формулируется в виде принципа взаимодействия на языке фундаментальных физических понятий, отражающих роль среды как посредника взаимодействия. С единой точки зрения принципа взаимодействия рассматривается широкий круг самых различных по своим масштабам ключевых задач теории капиллярных систем. Сюда относятся молекулярные корреляции в капиллярных системах молекулярная структура плоских, слабо и сильно искривленных поверхностных слоев взаимодействие макроскопических частиц. Используемые в принципе взаимодействия понятия реализуются в этих задачах как сжимаемости и адсорбции. Они и являются параметрами описания коллективных явлений, обусловленных влиянием среды. Особо рассматривается построение парного эффективного межмолекулярного потенциала по данным о рассеянии рентгеновских лучей. На протяжении всей статьи проводится сопоставление с альтернативным макроскопическим подходом, в котором вещество рассматривается не как состоящее из молекул, а как континуум, описываемый макроскопической характеристикой — диэлектрической проницаемостью. Это сопоставление касается не только расклинивающего давления пленки, на примере которого была первоначально сформулирована макроскопическая теория, но и большинства других результатов по дисперсионному взаимодействию [c.163]

    Особенности строения жидкостей определяются факторами ближнего и дальнего порядка Эффекты дальнего порядка тре ют учета коллективного влияния большого числа частиц. Эффекты ближнего порядка, по-видимому, главным образом связаны с парным взаимодействием частиц, образующих жидкость, и их можно изучать с помощью упрощенных моделей, в которых не учитывается окружение каждой такой пары Дпя их исследования могут быть с успехом применены квантово-химические методы [c.187]

    Увеличение коэффициента сопротивления изогнутого канала с развитием профиля скорости, т. е. с утолщением пограничного слоя, вызывается, очевидно, влиянием последнего как на усиление отрыва потока от стенок, так и на образование и развитие вторичных токов (парного вихря). [c.257]

    Полученные выводы можно дополнить, проанализировав влияние температуры на значения объемных коэффициентов в уравнении (З.П).Как показано в работах [94, 101, 102], величина b по смыслу тождественна вириальному коэффициенту парных взаимодействий, 1/22. между гидратированными молекулами растворенного вещества в разложении концентрационной зависимости избыточных объемов в ряд  [c.141]


    Аналогичная зависимость между энтальпией гидратации АК и в случае взаимодействия АК с урацилом, 6-азаурацилом и тимином отсутствует. Это свидетельствует о том, что влияние растворителя на процесс взаимодействия в указанных системах не является доминирующим. Вследствие того, что взаимодействие между боковыми группами АК и упомянутыми выше НО не обнаружено, можно предположить возможность кислотно-основного взаимодействия между концевыми цвиттерионными группами аминокислот и боковыми группами нуклеиновых оснований (NH, СО). С целью проверки данного предположения необходимо рассмотреть корреляции между коэффициентами парных взаимодействий и изменениями энтальпий диссоциации цвиттерионных групп АК. Для взаимодействия с урацилом линейные корреляции обнаружены для зависимости коэффициентов парных взаимодействий от энтальпий диссоциации цвиттерионной карбоксилатной группы АК. На рис. 4.21 видны две линейные зависимости [СОО"-гр.]) I - ряд Ala-Phe-Thr-Gly, II - ряд Leu-Val-Gly-Asn, причем I имеет больший угол наклона, чем II. Обе [c.241]

    Систематические сведения о влиянии концентрации органического растворителя на коэффициенты емкости в литературе сравнительно немногочисленны, но дают основания полагать, что в этом режиме соблюдается уравнение (4.52). Отмечено [57], что при постоянной концентрации ион-парного модифи- [c.173]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Состав орвды такхе окааивает большое влияние на скорость газовой коррозии металлов. Особенно сильно влияют кислород, соединения серы и водяные парн. [c.17]

    Влияние неаддитивности на С (Г) было рассмотрено также для потенциала Леннарда-Джонса. Чтобы учесть это, необходимо слегка изменить модели и включить в потенциал вклады от неаддитивности. Эти вклады существуют как для дальнодействующих, так и для короткодействующих взаимодействий. Самым простым изменением модели является добавление неадди- тивного вклада в дисперсионную и обменную компоненты энергии. Неаддитивная часть дисперсионной энергии, приведенная в уравнении (4.92), характеризуется коэффициентом V, пропорциональным коэффициенту в выражении для дисперсионной энергии при Г двух тел, причем в соответствии с уравнением (4.93) коэффициент пропорциональности равен-За/4. Неаддитивная компонента энергии обмена, которая выражается более сложно, была рассчитана в общем виде только для упрощенной модели с одним электроном (модель Гаусса) [87] и для модели учитывающей искажение электронного поля [87а]. В обоих случаях неаддитивная компонента энергии обмена может быть записана как величина, приблизительно пропорциональная аддитивной энергии обмена, причем константа пропорциональности некоторым образом зависит от используемой модели парного, взаимодействия. Обозначая два неаддитивных параметра в безразмерном виде как а =а/а и (е ) /2 = (еа/е ) /= (где е — заряд, электрона), неаддитивную часть С (Т) можно разложить в ряд. Тейлора [c.217]

    Выход глицерина Наибольшее положительное влияние на 1 оказывает модуль водорода вероятно, увеличение расхода водорода усиливает его диспергирование в данной реакционной системе. Следующим по силе является влияние взаимодействия температуры реакции и концентрации катализатора знак минус перед этим членом означает, что для увеличения 1 при более высокой температуре требуется добавлять меньше катализатора, и наоборот. Парное взаимодействие ХвХа со знаком минус свидетельствует, вероятно, о том, что с увеличением дозировки сокатализатора следует уменьшать давление водорода, и наоборот. Из дальнейшего анализа следует, что давление водорода оказывает положительное влияние на выход глицерина повышение температуры немного уменьшает выход глицерина, а повышение избытка Са(ОН)г увеличивает его, но в незначительной степени (из-за ма- [c.134]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    На уровень общей рентабельности оказывает влияние ряд факторов. Эго прежде всего повышающие (уменьшающие) аб солютный размер общей прибыли, прибыли от реализации то парной продукции, а также связанные с уровнем нспользоваиии основных производственных фондов и нормируемых оборотных средств. [c.194]

    Чтобы определить влияние излучения на материал следует знать, с помощью какого процесса поглощается этим материалом излучение. Существуют три способа поглощения 7-излучения 1) фо-тоэ-пектрический — 7-фотон полностью поглощается атомом при одновременной эмиссии из него электрона 2) комптоновское рассеяние — 7 фотон вступает во взаимодействие с атомом, выбивает электрон и отклоняется со своего пути в виде 7-фотона с меньшей энергией 3) парное рождение частиц — 7-фотон уничтожается вблизи атома с образованием пары легких частиц электрона и позитрона. При 7-излучении преобладает комптоновское рассеяние (рис. 4.1), [c.156]

    Химическая связь в твердом теле с координационной структурой может быть хорошо описана с позиций ММО. Если при описании простых молекул методы ВС и МО могут быть использованы одинаково широко, то образование твердых тел нельзя интерпретировать методом ВС. Здесь наиболее очевидны преимущества ММО. В рамках этого метода химическая связь между партнерами может осуществляться не только при парноэлектронных (валентных) взаимодействиях, но и при образовании невалентных орбитальных связей. В кристаллах, образовапиых с участием таких связей, электроны делокализованы или в части системы, охватывающей несколько атомов, или во всем кристалле. Например, при образовании металлических кристаллов наблюдаются большие координационные числа (как правило, 8 и 12). В то же время количества валентных электронов в металлах явно недостаточно для образования такого числа парно-электронных связей. При этом химическая связь осуществляется за счет обслуживания электроном большого числа структурных единиц (атомов). Химическая связь такого типа называется многоцентровой связью с дефицитом электронов. Таким образом, в отличие от валентных соединений здесь нельзя выделить отдельные связи, попарно соединяющие между собой соседние атомы. Хотя атомы связаны в устойчивую систему, между ними не существует классически понимаемых химических связей. Специфика взаимодействия большого количества частиц состоит в том, что при образовании ансамбля нрн сближении частиц и их взаимном влиянии друг на друга происходит расщепление атомных орбиталей. На рис. 127 показано расщепление орбиталей щелочного металла, валентный элеткрон которого находится на rts-уровне. [c.307]

    В качестве среды, в которой проводится вымораживание парафина, обыкновенно используются парные растворители спиртоэфирная смесь, смесь амилового спирта с этиловым, ацетон — толуол, дихлорэтан — бензол, ацетон — бензол, метилэтилкетон — бензол и другие. В каждой такой смеси один из компонентов является осади-телем твердых парафинов. К ним относятся хлорпроизводные, кетоны и др. В этих растворителях с понижением температуры растворимость парафинов резко падает. Другой же компонент (обычно ароматические углеводороды) является собственно растворителем для всей навески и для тех углеводородных примесей, которые могут частично осадиться вместе с парафином. На точность анализа оказывают также влияние величина навески, кратность разбавления навески растворителями и условия охлаждения. [c.131]

    Пирсон и соавторы подробно сопоставляли характеристики различных силикагелевых матриц, в частности влияние размера пор н фактора прочности, играюш,его важную роль при элюции концентрированными (до 80%) растворами пропанола (высокая вязкость ) в 0,1%-ном растворе ТФУ (ион-парная хроматография). Для адек- [c.215]

    Однако исследуемая парная корреляционная зависимость зна 1Йтельно искажена наличием существенных корреляционных зависимостей между входными параметрами. Для определения тесноты связи между входными параметрами камеры была также рассчитана матрица коэффициентов корреляции для входных параметров. Анализ этой матрицы и величин коэффициентов корреляции показывает, что величина корреляционной связи между входными переменными весьма значительна, что затрудняет истинную оценку влияния каждого входного параметра в отдельности на выходные. [c.107]

    Реакцин в газах. Поскольку в газах время между последовательными столкновениями молекул (10 с при нормальных условиях) много больше времени стожновения (10 -10 с), влияние среды (окружения) проявляется лишь в соударениях реагирующих молекул с молекулами окружения до или после столкновения реагирующих молекул друг с другом, но не за время одного столкновения. Поэтому элементарный акт р-ции можно рассматривать как результат изолированного парного столкновения. Такие столкновения могут приводить к изменению числа частиц с энергией, превышающей энергию активации р-ции Е, и нарушению максвелл-больцмановского распределения частиц по энергиям их относит, движения и внутр. степеням свободы. В зависимости от соотношения скоростей р-ции и процессов релаксации, восстанавливающих это распределение, различают равновесные и неравновесные Б. р. [c.285]

    Во избежание нежел-ательных явлений обычно рекомендуют пользоваться специальными таблицами и диаграммами смешения. Одна из таких диаграмм приведена на рис. VHI-13. Из пее, например, следует, что калийные соли можно смепшпать со всеми удобрениями, аммофос — со всеми удобрениями, кроме металлургических шлаков, аммиачную селитру нельзя смеши-пать с карбамидом и т. д. Однако эти таблицы и диаграммы не учитывают влияние нейтра.т1изующих добавок, изменений н ас-. сортименте и качестве удобрений рекомендации таблиц относятся только к парным комбинациям, и, следовательно, не мо- [c.340]

    Коэффициенты парных взаимодействий для остальных изученных систем имеют сравнительно небольшие по абсолютной величине положительные и отрицательные значения (табл. 4.20), что исключает возможность ассоциации. В случае, когда существует линейная зависимость коэффициентов парных взаимодействий от энтальпии гидратации аминокислот к (А у Д)), можно говорить о наличии слабого взаимодействия между молекулами растворенного вещества, которое сопровождается их частичной дегидратацией [7, 8]. Такая зависимость коэффициентов парных взаимодействий аминокислот с нуклеиновыми основаниями от энтальпий гидратации АК обнаружена для взаимодействия с yt, Ade и af (рис. 4.20). Существование указанной зависимости говорит о том, что несмотря на значительную конкуренцию между процессами слабых взаимодействий и дегидратации, для указанных молекул влияние растворителя на процесс взаимодействия является управляющим фактором. Необходимо отметить, что зависимость (Ahyjfi) гораздо слабее для аденина и кофеина, чем для цитозина. Это говорит о большей конкуренции между вышеупомянутыми процессами для Ade и af, чем для yt и о том, что для изученных пуриновых НО растворитель оказывает меньшее влияние на процесс их взаимодействия с АК, нежели для цитозина. Таким образом, слабое взаимодействие цитозина, аденина и кофеина с АК в значительной степени зависит от гидратационного состояния аминокислот. [c.241]

    Чарнецкий и Даброш [88] методом интегрирования парных взаимодействий молекул получили оценки влияния неровностей поверхности сферической частицы на энергию ее притяжения и (Я) к плоскости. Наличие неровностей приводит к снижению и (Я), тем более сильному, чем больше радиус частиц и меньше Я. Меньшее влияние, чем высота неровностей, оказывает их конкретная форма. [c.102]

    Аналогичные выводы следуют также и из проведенных ранее Куни, Русановым и Бродской расчетов молекулярных функций распределения для многокомпонентных плоских пленок и прослоек раствора на основе микроскопического подхода [26]. Межмолеауляр-пые взаимодействия были описаны здесь с помощью парных вакуумных потенциалов с перенормировочным множителем, учитывающим влияние среды. Из выражения для нормальной составляющей тензора давления Рц было получено уравнение изотермы расклинивающего давления П К) = Рл Щ — Р , где Р — давление в объемной фазе раствора. [c.132]

    Подвижные фазы. Хроматографические разделения с использованием ионообменников чаще всего проводят в водных растворах, так как вода обладает прекрасными растворяющими и ионизирующшш свойствами. Под действием воды молекулы пробы мгновенно диссоцшфуют на ионы, ионо-генные группы ионообменников гидратируются и также переходят в полностью или частично диссоциированную форму. Эго обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывают pH, ионная сипа, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хромато1рафия). [c.317]

    Облучение эфиров коричной кислоты индуцирует транс-цис-изомеризацию, димеризацию и расщепление сложноэфирной связи. В данном случае последнему превращению подвергается менее 5% исходного циннамата. Как и можно было предполагать, повышение начальной концентрации циннамата способствует димеризации и не благоприятствует изомеризации. При транс— г ыс-изомеризации окружающие молекулы растворителя претерпевают лишь небольшие возмущения, поэтому изомеризация протекает практически с одной и той же скоростью в изотропной, смектической и твердой фазах -бутилстеарата. Напротив, региоселективность фотохимической реакции [2-[-2]циклоприсо-единения в очень большой степени зависит от природы фазы. В продуктах обсуждаемой реакции из многих возможных димеров обнаружены только два стереоизомера, изображенные на схеме (5.165). Как оказалось, в смектической и твердой фазах доминирует димеризация по типу голова к хвосту. Этот эффект можно объяснить, допустив, что в мезофазе молекулы циннамата реагируют друг с другом не только за счет эффектов растворителя, но и за счет диполь-дипольных взаимодействий. Последние приводят к парным антипараллельным ассоциатам молекул циннамата, которые располагаются между окружающими их молекулами растворителя. Облучение таких антипараллельных ассоциатов преимущественно приводит к димерам типа голова к хвосту. Резюмируя, можно сказать, что региоселективность фотодимеризации -октадецил-тра с-циннамата контролируется двумя факторами — ориентацией молекул циннамата под влиянием упорядоченной структуры растворителя и диполь-дишль-ными взаимодействиями между молекулами циннамата [731]. [c.381]

    На проявление модифицирующего эффекта существённое влияние оказывает pH подвижной фазы. Ассоциация модификатора с сорбатом, где бы она ни происходила, будет наиболее прочной, если оба они ионизированы. Поэтому pH подвижной фазы выбирают в зависимости от свойств сорбата и модификатора. На рис. 4.43 изображена типичная зависимость коэффициентов емкости слабой кислоты от pH подвижной фазы и концентрации модификатора. Нижняя кривая, соответствующая обычному обращенно-фазовому режиму, совпадает по форме с кривыми рис. 4.4. При добавлении в подвижную фазу динамического модификатора удерживание увеличивается. Более всего этот эффект выражен при pH около 6, где в достаточной степени ионизированы и сорбат, и модификатор. Рекомендуемые значения pH для ион-парной хроматографии приведены в табл. 4.38. [c.173]


Смотреть страницы где упоминается термин Ион-парная влияние: [c.207]    [c.159]    [c.189]    [c.70]    [c.43]    [c.50]    [c.203]    [c.209]    [c.479]    [c.14]    [c.14]    [c.111]    [c.90]    [c.167]    [c.105]    [c.212]    [c.213]    [c.537]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.174 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте