Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая обработка волокна из поливинилового спирта

    Химическая обработка волокна из политетрафторэтилена является вспомогательной операцией. Необходимость этой операции обусловлена растворимостью поливинилового спирта в воде, что не позволяет осуществить промывку волокна водой с целью удаления с волокна компонентов прядильной ванны непосредственно после формования. Даже незначительное количество солей, оставшееся на волокне, влияет на процесс термообработки, а следовательно, и на свойства готового волокна. [c.79]


    ХИМИЧЕСКАЯ ОБРАБОТКА ВОЛОКНА ИЗ ПОЛИВИНИЛОВОГО СПИРТА [c.213]

    Поливиниловый спирт образует с водой и щелочами вязкие растворы, из которых формуют волокна и пленки. Чтобы эти изделия не растворялись в воде, поливиниловый спирт подвергают химической обработке альдегидами, в результате чего образуются нерастворимые ацетали  [c.417]

    Ввиду исключительной стойкости поливинилового спирта к углеводородам он применяется для изготовления каучукоподобных бензостойких материалов. Водные растворы его используются как среда при бисерной полимеризации, в качестве клея и сгустителя, а также для производства синтетического волокна. Для придания волокну нерастворимости в воде его подвергают химической обработке, например альдегидами при этом образуются нерастворимые ацетали  [c.297]

    В таких макромолекулах содержатся группы, родственные группам воды, поэтому полимер обладает гидрофильностью, т. е. проявляет сродство к воде и растворяется в ней, образуя вязкие растворы. Эти растворы можно использовать в качестве шлихты при переработке текстильных волокон при окончательной отделке они легко удаляются с волокон промывкой. Сам полимер на ощупь рогоподобен, но становится мягким и несколько эластичным при смешении с глицерином. Глицерин настолько хорошо совмещается с этим материалом, что почти не выпотевает и не теряется каким-либо другим путем. Этот полимер называется поливиниловым спиртом. Его можно перерабатывать в волокна, хотя, конечно, такие волокна не находят применения, поскольку они растворимы в воде. Однако посредством определенной химической обработки можно добиться образования связей между цепными молекулами при этом исчезает способность волокна растворяться в воде и из такого поливинилового спирта можно получать текстильные волокна. [c.14]

    Ориентация макромолекул не только снижает восприимчивость волокна к молекулам воды, но в определенных условиях может приводить и к различной растворимости мало ориентированное волокно будет растворяться, а сильно ориентированное — не будет. Поливиниловый спирт растворим в воде поэтому при производстве волокна винилон с целью уменьшения растворимости волокно обрабатывают формальдегидом, образующим поперечные связи между макромолекулами. В настоящее время найдено (пат. США 2, 610, 359 и 2, 610, 360), что если волокно из поливинилового спирта в процессе формования подвергнуть достаточно высокой ориентации, оно даже без последующей химической обработки становится устойчивым к действию кипящей воды (см. стр. 370). [c.83]


    Получаемые из поливинилового спирта волокна после обработки их различными альдегидами имеют различное химическое строение и разные свойства. [c.211]

    Образование поперечных химических связей (сшивок) между макромолекулами или элементами надмолекулярной структуры волокна. Этот метод, широко используемый в химии и технологии полимеров (в частности, при превращении каучука в резину), применяется и для модификации свойств некоторых химических волокон. Например, производство поливинилспиртового волокна, устойчивого к многократным водным обработкам, основано, как правило, на образовании ацетальных связей между макромолекулами поливинилового спирта. Метод образования поперечных химических связей между макромолекулами применяется при производстве неплавких полиамидных волокон, для получения несминаемых изделий, изготовляемых из сшитого вискозного волокна. [c.164]

    Высоким начальным модулем, не уступающим полиэфирному волокну, обладает и синтетическое волокно из поливинилового спирта . Полиамидные волокна и нити имеют сравнительно низкий начальный модуль, что является их существенным недостатком при переработке и эксплуатации. Более низкое значение начального модуля полиэфирного и полиакрилонитрильного штапельного волокна по сравнению с нитью объясняется тем, что в штапельном волокне ориентация макромолекул, как правило, ниже, чем в филаментных нитях. Кроме того, штапельное волокно благодаря особенностям условий сушки отрелаксировано значительно больше. Разница в величине начального модуля, определяемая различием химической природы полимера, может быть в известной степени уменьшена изменением степени ориентации в процессе формования или последующей обработки волокна. [c.138]

    Отделка волокна из политетрафторэтилена, полученного с применением поливинилового спирта как загустителя, проводится для придания поливиниловому спирту нерастворимости в воде и удаления с волокна компонентов прядильной ванны и состоит из следующих операций химической обработки, ацеталирования, промывки и сушки. [c.79]

    Для придания волокну стойкости к кипящей воде его подвергают обработке формальдегидом, что приводит к образованию между гидроксильными группами поливинилового спирта химических, так называемых ацетальных связей  [c.230]

    Из поливинилового спирта с минимальным содержанием ацетильных групп и разветвлений удается без химической обработки получить волокна с весьма высокой степенью упорядоченности и соответственно высокими прочностью и водостойкостью при температурах до 100 °С. Однако при кипячении в течение нескольких часов такие волокна разрушаются. Поэтому в настоящее время при изготовлении волокон для целей широкого потребления и технических целей их следует подвергать химической обработке с целью придания высокой стойкости к кипячению в воде. [c.280]

    Стабилизация волокна нагреванием. Если волокно, полученное в осадительной ванне, подвергнуть отмывке и высушиванию, то оно хорошо растворяется в холодной воде. В таком виде оно имеет лишь ограниченные области применения. Если же волокно подвергнуть дополнительной вытяжке и сушке на воздухе при высокой температуре, то оно делается не растворимым в холодной, но обычно еще поддается воздействию горячей воды. При вытягивании и нагревании волокна происходит ориентирование макромолекул в направлении вытяжки и увеличение упорядоченных областей, а также и частичное связывание цепей полимера прямыми валентными связями за счет образования простых эфирных мостиков при отщеплении воды от двух гидроксильных групп соседних молекул. Число таких мостиков, возникающих при термической обработке, пе вызываю-1цей глубокой деструкции поливинилового спирта ( 240°), сравнительно невелико. Кроме того, эти связи разрушаются при длительном пребывании волокна в кипящей воде. Поэтому для придания волокну винилона устойчивости к действию горячей воды применяется химическая обработка волокна. [c.194]

    Химическая обработка волокна. В производстве винилона обычным реагентом для химической обработки является формальдегид, применяемый в виде формалина, в который погружаются нити поливинилового спирта, или в газообразном состоянии. Типичная ванна для обработки волокна из поливинилового спирта формальдегидом состоит из 20% Н2304, 25% Ка2304, 4% ИСОН и 51% НгО. Модуль ванны 1 40. Обработка ведется при температуре 75° в течение 40 мин. При взаимодействии поливинилового спирта с формальдегидом происходит реакция образования ацеталя, причем часть молекул формальдегида вступает в реакцию с гидроксилами двух соседних молекул, образуя между ними метиленовые мостики. Формализованное волокно имеет следующую молекулярную структуру (см. стр. 747). [c.194]


    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    В некоторых случаях применяют химическую обработку с целью модификации свойств волокна. Примерами такой модификации являются обработка волокна из — поливинилового спирта растворами формальдегида для придания ераство-римости, омыление ацетатных групп (волокно фортизан) для повыигения прочности и химической стойкости и частичный гидролиз полиакрилоиитрила с целью улучшения окрашиваемости волокон. [c.322]

    Кроме силанов применяют и другие соединения. Так, обработкой металлов стеариновой кислотой повышают устойчивость соединений металлов с полиэтиленом и другими полиолефинами (см. гл. 6). Прививка к поливиниловому спирту 4,4 -дифенилметандиизо-цианата приводит к возрастанию длительной прочности соединений поливинилопиртовых волокон с матрицей из эпоксидной смолы [193]. В работе [193] не просто фиксировалось образование химических связей аппрет — субстрат, а на основании результатов ИКС клеевого соединения под нагрузкой было показано, что образующаяся уретановая связь механически нагружена. Увеличение адгезии тонких металлических пленок (золото, серебро, медь и т. д.) к пластикам обеспечивается как обработкой полиизоцианатом (по-лиметилметакрилата), так и кремнийорганическим продуктом АГМ-9 (полиамидов, полиэтилентерефталата и др.) [194]. Широко известно применение для обработки стеклянного волокна комплексных соединений хрома и метакрилатов. [c.48]

    Убедительный пример влияния межфазных молекулярных связей на прочность композита приведен в работе [110], авторы которой исследовали взаимодействия в системе матрица (эпоксидный компаунд)—арматура— (волокна на основе поливинилового спирта). Если между исходными волокнами ПВС и матрицей не наблюдается никакого химического взаимодействия, то обработка волокон 4,4 -дифенилметандиизоцианатом (МДИ) приводит к химическому взаимодействию по гидроксильным группам. Кроме того, модификатор также химически взаимодействует и с матрицей. Следствием этого взаимодействия является существенное повышение прочности композита [ПО]. ИК-спектры нагруженных образцов свидетельствуют о том, что молекулы МДИ несут ири этом механическую нагрузку. Изучение особенностей развития магистральных трещин в исследуемых композитах с модифицированными и немодифицированными волокнами показало, что расслаивание по границе матрица—волокно занимает значительную долю времени от всего процесса разрушения композита, причем химическое взаимодействие матрицы с волокном существенно снижает скорость расслаивания [110]. Таким образом, прочность композиционного материала самым тесным образом связана с характером межфазных связей — собственно адгезией. [c.35]

    Вторая причина заключается в том, что волокна из поливинилового спирта обладают специфическими свойствами, отличающими их от всех других видов синтетических волокон. Этот вид волокна является единственным гидрофильным синте-тически.м волокном, вырабатываемым в настоящее время. В зависимости от метода последующей (после формования) обработки гигроскопичность поливинилспиртового волокна можег изменяться в широких пределах (по этому показателю оно не уступает. хлопку). В последнее время установлена возможность получения сверхпрочного поливинилспиртового волокна. Такое волокно имеет очень высокую прочность при разрыве, достигающую 90—100 ркм. Следовательно, поливинилспиртовое волокно этого вида является одним из наиболее прочных химических волокон, вырабатываемых в настоящее время. Производство водорастворимого поливинилспиртового волокна было начато в Германии в 1934 г. Германсом и Хекелем. Следовательно, это волокно является одним из первых видов синтетического волокна, получившее промышленное применение. Однако растворимое в воде волокно, естественно, могло получить только ограничен- 1ое применение. Потребовалось еще 10—-12 лет для разработки экономичного метода получения волокна из этого полимера, нерастворимого в воде и обладаюшего необходимым комплек- [c.232]

    В процессе химической обработки (ацеталирования) волокна часть гидроксильных групп поливинилового спирта замещается на ацетальные, и волокно теряет способность растворяться в воде °°. Ацеталирование волокна можно проводить любой ацеталирующей смесью, применяемой для аналогичного процесса в производстве волокна из поливинилового спирта. Чаще всего исполь-зуют 2 ацеталирующую смесь, содержащую 15—20% Нг504, 20—25% N32804 и 4—5% НС НО. [c.79]

    Некоторое увеличение водостойкости свежесформованного (т. е. не подвергавшегося термической и химической обработкам) ПВС волокна достигается при фосфорилировании его хлорокисью и другими соединениями фосфора. Однако с повышением температуры эти волокна полностью или частично растворяются в воде [51,52]. То же происходит при действии на свежесформованные волокна борной кислоты [53, 54]. Водостойкость волокна после такой обработки несколько увеличивается (что можно объяснить образованием мостичных эфирных связей в поливиниловом спирте), но при повышении температуры волокно полностью растворяется. [c.286]

    Причиной снижения прочности волокна является дезориентация макромолекул в процессе его свободной усадки, а также химические изменения, возникающие в макромолекулах поливинилового спирта при повышенных температурах (были рассмотрены ранее). Эти же химические изменения обусловливают пожелтение поливинилспиртового волокна в процессе термической обработки. С целью уменьшения потерь прочности ПВС волокна необходимо осуществлять его термическую обработку под натяжением. В этом случае прочность волокна оказывается не ниже, а иногда даже и выше, чем у свежесформованного волокна, а водостойкость термообработанного под натяжением волокна после ацеталирования — примерно такая же, как у ацеталированного волокна, прошедшего термическую обработку в свободном состоянии. [c.308]


Смотреть страницы где упоминается термин Химическая обработка волокна из поливинилового спирта: [c.210]    [c.213]    [c.232]    [c.47]   
Смотреть главы в:

Поливиниловый спирт и его производные Том 2 -> Химическая обработка волокна из поливинилового спирта




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Поливиниловый спирт

Спирт химический



© 2025 chem21.info Реклама на сайте