Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы получения металлического молибдена

    Попытки получить молибден электролитическим способом нз водных растворов делались различными исследователями неоднократно, однако ни одна из них не дала практически ценных результатов. При электролизе сернокислых растворов молибдата натрия или растворов его, содержащих хлористый аммоний и уксусную кислоту, удается выделять молибден на катоде в виде окисла трехвалентного молибдена. Этот метод используется в аналитической химии молибдена. Получение же металлического молибдена пока не удавалось. [c.85]


    Кроме урана, тория и плутония, находящихся в виде химических соединений или в металлическом состоянии, твэлы могут включать в себя большое число неделящихся материалов, таких, как нержавеющая сталь, нихром, алюминий, магний, цирконий, бериллий, титан, никель, хром, медь, кремний, ниобий, молибден и их сплавы. Последние могут применяться в смеси с делящимися материалами в качестве наполнителя в виде сплавов, соединений, полученных методом порошковой металлургии, или в виде механических смесей, или же как материал оболочки для защиты твэла от коррозии и сохранения продуктов деления. [c.421]

    Металлический молибден в промышленных условиях получают в виде порошка восстановлением молибденового ангидрида водородом. Для получения плотного металла порошок прессуют в брикеты (штабики) и спекают в две стадии. Чтобы получить крупные заготовки для листового молибдена и сплавов на его основе, крупные прессованные брикеты плавят в дуговой печи в вакууме или заш,итной атмосфере. В последнее время осваивается метод электроннолучевой плавки молибдена. [c.568]

    Производство дифенила описано S ott oM Пары бензола пропускают через металлический змеевик, погруженный в свинцовую баню, нагретую до 600—650°. По выходе из змеевика пары пробулькивают через расплавленный свинец и попадают в другой такой же змеевик, пофуженный во вторую с-вин-цовую баню, температура которой 750—800°. Полученный таким образом дифенил пропускают с большой скоростью через водяной холодильник. Согласно другому методу пары бензола пропускают через реакционную камеру, нагретую при 800° и содержащую контактные вещества, уменьшающие отложение угля Такими веществами являются сернистые кобальт, железо, медь, молибден,, мышьяк, олово или цинк хлористые никель или сурьма хромово-калиевые квасцы или же металлы селен, мышьяк, кремний, сурьма или молибден. Кроме того для такой дегидрогенизации были предложены следующие катализаторы трудноплавкие окислы, ванадаты, хроматы, вольфраматы, молибдаты, алюминаты, цин-каты таких металлов, как кальций, магний, титан, церий, цирконий, торий и бериллий [c.210]

    Дисульфид — технически наиболее важный и наиболее изученный сульфид молибдена. Он представляет природное соединение молибдена (минерал молибденит) и служит исходным сырьем для получения металлического молибдена. В связи с тем, что дисульфид молибдена в настоящее время широко применяют в технике в качестве сухой смазки, решается вопрос о методах получения МоЗа, содержащего не более 0,2% примесей. Особенно вредная примесь — кварц, содержащийся в молибденитовых концентратах в количестве 5—7%. Чтобы получить чистый МоЗз, пригодный для смазки, из природных концентратов, необходима их многократная переработка [349]. Флотационно выщелачивающая химическая очистка позволяет получить из природных концентратов МоЗ-2 чистотой 99,8% [350]. [c.148]


    Можно также получать металлический порошкообразный молибден восстановлением его окислов или солей углеродом, или восстанавливать электролизом М0О3 в расплаве солей. Но этими способами получаются порошки, непригодные по чистоте и структуре для производства ковкого металла методом порошковой металлургии. В лабораторных условиях электролизом М0О3 в расплавленной смеси тетрабората, пирофосфата и фторида натрия получен очень чистый порошок молибдена. Такой металл в силу своей крупнодендритной структуры непригоден для порошковой технологии, но может перерабатываться в плотные слитки плавкой в дуговой печи [31—36]. [c.568]

    Дифрактометр — один из первых аналитических приборов, работа которого контролировалась компьютером. Однако еще на неавтоматизированных дифрактометрах было показано, что измерения интенсивности с помощью детекторов более точны, чем полученные фотографическими методами. Утомительная работа по регистрации данных и обработке измерений на фотопленках сменилась повторяющейся последовательностью операций по установке положений и измерению данных. Получение данных одного эксперимента на простом дифрактометре требует измерения интенсивности тысяч отражений Брэгга. Для каждого отражения кристалл и детектор должны быть точно ориентированы. Последующее развитие компьютеров применительно к дифрактометрам позволило автоматизировать эту многократно повторяющуюся процедуру. Современные автоматические дифрактометры — сложные машины, которые чаще всего производятся частными компаниями. В этом параграфе в основном рассматриваются гониометр, в котором фиксируются кристалл и детектор компьютер, управляющий гониометром и собирающий данные. Обычно источник рентгеновских лучей — это герметичная трубка, в которой в качестве антикатода используется металлическая медь или молибден. Генератор высокого напряжения должен обеспечивать максимальную надежность и безопасность работы и гарантировать оптимальную стабильность высокого напряжения и тока в трубке. Например, подаваемое на трубку напряжение не должно меняться более чем на 0,01 В при изменении напряжения в линии на 10 %. Для получения монохроматического излучения используют фильтр или кристалл-монохро-матор. Следует отметить, что обычные пользователи прибора не сталкиваются впрямую с этими проблемами, так как технический паспорт должен содержать сведения не только о разных частях прибора (гониометре, генераторе высокого напряжения, электронном детекторе), но и рекомендации относительно их использования [c.249]

    А. К. Бабко и П. В. Марченко [30] выделяли микроколичества молибдена из металлического циркония высокой чистоты при помощи основного красителя — метилвиолета — в присутствии роданидов. Образующийся тройной комплекс, содержащий щестивалентныи молибден, роданид и метилвиолет, количественно соосаждается с роданидом метилвиолета. Осадок удобно отделять флотацией при помощи легких не смешивающихся с водой жидкостей. Определение молибдена в полученном концентрате заканчивают фотометрическим методом. Цирконий в форме фторидного комплекса не образует малорастворимого соединения при условиях выделения молибдена. [c.153]

    Сплавы урана с молибденом и кремнием [32]. Сплавы этой группы были получены методом дуговой плавки с вольфрамовым электродом. Уран, взятый из центральной части слитка чернового металла сплавлялся с добавками соответствующих количеств молибденового порошка и металлического кремния. Полученные слитки были подвергнуты дуговой переплавке с расходуемым электродом. После двух таких переплавок были получены однородные сплавы хорошего качества. [c.448]

    К другим методам получения металлического тантала относится метод хлорирования концентратов с последующим восстановлением щелочными металлами . Применяется также электролитический метод получения металлического тантала. Электролизу подвергается шятиокись тантала в смеси расплавленных солей КгТаРу, KF и КС1. Процесс ведется в железном или никелевом тиглях, которые служат катодами в качестве анодов. могут быть применены молибден, никель, графит. Процесс электролиза проводится при 750°. Полученный порошок тантала [c.134]

    Методы, основанные на восстановлении шестивалентного молибдена металлическими железом, никелем или кобальтом. Есимура [1563] изучал восстановление шестивалентного молибдена в редукторе Джонса, заполненном мелкими стружками неактивированного или активированного железа. Активирование железа производилось пропусканием раствора сульфата меди в соляной кислоте. Полученный трехвалентный молибден титровали раствором железоаммиачных квасцов в присутствии роданида калия. При таких опытах не удалось установить каких-либо определенных преимуществ каждого редуктора вследствие трудности установления конечной точки титрования. [c.196]


    Методы извлечения металлов из промышленных сточных вод значительно различаются в зависимости от природы металлического нона и его концентрации. Изучение состава сточных вод, образующихся в травильных и гальванических цехах, показало [76], что ионообменный процесс обеспечивает экономичное извлечение из них хрома, меди и цинка [139, 180, 615], позволяя одновременно предотвратить загрязнение водоемов. Применением ионного обмена может быть разрешена проблема очистки сточных вод в промышленности искусственного шелка, где основным металлом—загрязнителем является цинк или медь [22, 553]. Обширные исследования проведены по применению методов ионного обмена для очистки вод, загрязненных опасными радиоактивными отходами установок по производству атомной энергии [379]. Методы ионного обмена обеспечивают экономичное извлечение серебра из сточных вод отходов фотолабораторий и кинокопировальных фабрик [388, 389] и извлечение магния из морской воды [49, 386]. Показано [19, 527—530], что такие металлы, как хром, мышьяк, железо, молибден, палладий, платина и ванадий, могут быть извлечены из разбавленных растворов и сконцентрированы путем адсорбции соответствующих комплексных анионов (СгО , РЬС1 и т. д.) на анионообменных смолах. Описаны методы получения магния из морской воды при помощи ионного обмена [209,257,386]. [c.139]

    Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4]. [c.161]

    Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например А12О3, М 0, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден.  [c.14]

    Хлорирование молибденовых огарков, окисленных промежуточных продуктов и чистых соединений молибдена. Хлорирование — перспективный метод переработки низкосортных огарков, окисленных концентратов и промежуточных продуктов обогаш,ения окисленных руд, содержаш,их молибден. Хлорирование может также применяться для получения чистых хлоридов с целью выработки из них металлического молибдена методами диссоциации или металлотермии. Хлорировать можно хлором, летучими хлоридами (например, Sg l , ССЦ), твердыми хлоридами. Хлорирование низкосортных концентратов, содержащих сульфиды, целесообразно применять к обожженным огаркам таких концентратов. Ректификацией продуктов хлорирования могут быть получены соединения высокой чистоты [42]. [c.211]

    Возможно покрытие поверхности материала различными защитными пленками — термодиффузионными железо-алюминиевыми или железо-хромовыми — методами химико-термической обработки (хромирование и алитирование), нанесение металлокерамических покрытий, керметов, металлооксидных покрытий, для получения которых в качестве неметаллических ингредиентов применяют тугоплавкие оксиды (например, АГОз, МеО), карбиды и нитриды различных металлов. Металлическими составляющими таких покрытий могут служить тугоплавкие металлы — вольфрам, молибден, хром и т. п. [c.52]

    Наконец, пористые металлические катализаторы можно получать непосредственным спеканием порошкообразного металла, иногда с использованием других веществ, например буры, которая способствует сохранению пористости образца. Образующие порошок частицы металлов имеют размер порядка микрометра такие порошки могут на воздухе самоокисляться (т. е. обладать пирофорными свойствами), что затрудняет работу с ними. Монолитные пористые катализаторы, полученные описанным способо.м, применяются как электрокатализаторы в топливных элементах некоторые аспекты такого их применения обобщены Бэконом и Фраем [150]. Обычно используемый водородный электрод щелочного топливного элемента состоит пз пористого никеля, по-видимо.му сплавленного с другими металлами, например железом, молибденом или титаном, и для повышения электрокаталитической активности покрытого дисперсными металлами— никелем, платиной или палладием, нанесенными обычным методом пропитки и восстановленными водородом. На практике для регулирования процессов переноса жидкости и газа необходим тщательный контроль пористой структуры электродов. [c.232]

    Для разделения технеция и молибдена кроме экстракции широкое распространение получили и хроматографические методы. В качестве примера рассмотрим выделение Тс Такером, Грином и Мирренгофом [232]. Металлический уран или окись урана, содержащие продукты деления, растворяют в азотной кислоте. Разбавленный до концентрации азотной кислоты 2— 3 М раствор пропускают через хроматографическую колонку, содержащую окись алюминия. Из кислых растворов на ней сорбируются иод, теллур и молибден, а остальные продукты деления колонкой не задерживаются. Колонку промывают азотной кислотой, водой и слабым раствором аммиака для удаления Молибден выделяют, пропуская через колонку 1М раствор аммиака. Полученный раствор пертехнетата аммония подкисляют азотной кислотой до рН = 1—2 и Мо вновь сорбируют на окиси алюминия, предварительно обработанной азотной кислотой. [c.78]

    Получение надежных результатов при определении кислорода и азота в молибдене и хроме методом вакуумплавления может быть обеспечено лишь в случае полной диссоциации нитридов и полного восстановления окислов. Метод анализа должен, также обеспечивать лишь минимальные потери экстрагированных газов на металлическом возгоне и учет вторичных реакций в аналитической системе. [c.281]


Смотреть страницы где упоминается термин Методы получения металлического молибдена: [c.181]    [c.181]    [c.297]    [c.647]    [c.297]    [c.426]    [c.618]    [c.764]    [c.13]    [c.144]    [c.226]    [c.538]    [c.346]    [c.247]   
Смотреть главы в:

Новые конструкционные химически стойкие металлические материалы -> Методы получения металлического молибдена




ПОИСК





Смотрите так же термины и статьи:

Молибден методом

Молибден получение

Получение металлического молибдена



© 2025 chem21.info Реклама на сайте