Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия многоэлектродных систем

    Для графического расчета системы, состоящей из нескольких металлов (или металла из нескольких структурных составляющих), необходимо знать относительные величины площадей каждого металла и соотношение поверхностей всех анодных и катодных составляющих каждого металла (электродов) и располагать идеальными анодными и катодными поляризационными кривыми всех электродов (т. е. всех анодных и катодных составляющих металлов) в условиях, близких к условиям коррозии многоэлектродной системы, называемыми, по В. П. Батракову, дифференциальными — парциальными кривыми. [c.287]


    Значение последнего позволяет рассчитать степень анодного и катодного контроля работы многоэлектродной системы, т. е. соответствующего суммарного процесса коррозии нескольких металлов в контакте друг с другом  [c.288]

    Нетрудно заметить, что для полного прекращения саморастворения (коррозии) второго металла его следует привести в контакт с таким металлом (анодом) или несколькими металлами, чтобы общий потенциал многоэлектродной системы Ух был равен обратимому потенциалу второго металла (Уа,)обр или был отрицательнее его. Это условие выполнено в системе из трех металлов (шестиэлектродной системе) для третьего металла (см. рис. 194), который сохраняет только катодные функции и не подвергается коррозии ни внешним (ток макропар), ни внутренним (ток собственных микропар) током. [c.293]

    Бинарный сплав как короткозамкнутая, многоэлектродная система может быть рассчитан при помощи соответствующей диаграммы коррозии этой системы (см. с. 287). Теоретический анализ подобного рода диаграмм для сплавов приводит к возможным кривым изменения потенциала бинарного сплава в зависимости от его состава (рис. 199). [c.297]

    Часты случаи, когда в контакте находятся несколько корродирующих металлов (полиметаллические конструкции), которые образуют сложный многоэлектродный элемент (см., например, рис. 188). Графическое решение многоэлектродной системы (гл. 15, пп. 3, 4 и 5) позволяет определить полярность каждого металла и коррозионный эффект полиметаллического контакта (увеличение или уменьшение коррозии) для каждого из сопряженных металлов. [c.358]

    Развитый подход может быть использован при оценке коррозии металлических материалов для полиметаллической конструкции (многоэлектродная система). На рис. 20 представлены парциальные анодные кривые в координатах потенциал—скорость коррозии в мм/сут. Штриховой линией показан смешанный потенциал полиметаллической конструкции. [c.45]

    Электрическое разъединение металлов, образующих многоэлектродные коррозионные системы, позволяет уменьшить скорость контактной коррозии металлов, являющихся в составе данной системы анодами (направление и сила тока для каждого электрода многоэлектродной системы определяется по данным разд. 2.1.3). Достигаемое при этом снижение скорости контактной коррозии каждого анода определяется величинами сопротивлений разъединения (г раз, т, = [c.243]


    В многоэлектродной системе металл, обладающий наибольшим отрицательным потенциалом, является анодом, а металл с наиболее положительным потенциалом — катодом [79]. При этом скорость контактной коррозии зависит от разности потенциалов и поляризуемости каждого электрода. Поэтому, как было показано И. Л. Розенфельдом, при одной и той же разности потенциалов можно наблюдать различные скорости контактной коррозии [80]. Контактная коррозия может проявиться и при наличии в электролите ионов более благородных металлов, осевших на поверхности менее благородного металла [58]. Известно, что осаждение ионов меди на поверхности алюминия, железа и оцинкованного железа вызывает разрушение последних [58]. [c.82]

    При проведении работы надо ознакомиться 1) с распределением анодных и катодных участков в многоэлектродных системах при межкристаллитной коррозии 2) со связью между характером разрушения металла и целесообразными способами ее выражения..  [c.107]

    Известно, что питтинговая коррозия — это типичный пример электрохимического коррозионного процесса, протекающего по гетерогенному механизму растворения [1—9]. Довольно быстрая дифференциация поверхности на анодные и катодные участки приводит к особому распределению плотности тока и потенциалов по поверхности. Исследование электрохимии таких систем сопряжено с большими трудностями, поскольку мы по существу имеем дело с многоэлектродной системой, включающей несколько мельчайших анодов (питтингов) и один большой катод. Положение осложняется еще тем, что скорость процесса в питтингах сильно меняется во времени [10, [c.193]

    Структурная коррозия и многоэлектродные системы [c.62]

    Рассмотренный механизм электрохимической коррозии металлов и сплавов в основном принят применительно к двухэлектродной системе. В практических же условиях, учитывая гетерогенность металлической поверхности, обычно имеет место одновременное взаимодействие с раствором электролита разнородных структурных составляющих, примесей других элементов, содержащихся в металле или сплаве, а также влияние на коррозионный процесс различных факторов (неодинаковая концентрация раствора, разная степень нагрева, неодинаковая аэрация и др.). Рассмотрение механизма коррозии таких систем в виде двухэлектродных элементов оказывается недостаточным, так как в этих условиях возникают многоэлектродные макро- и микрогальванические элементы. Как будут вести себя замкнутые в общую цепь электроды с различными начальными потенциалами и поляризационными характеристиками, будет зависеть от многих причин. При решении вопросов коррозии многоэлектродных элементов в первую очередь необходимо установить, [c.55]

    С увеличением количества освободившихся электронов возрастает сила тока многоэлектродной системы, так называемый ток коррозии. Поверхность металла состоит из многочисленных разделенных в пространстве и электрически замкнутых анодных и катодных участков, которые отличаются потенциалом, занимаемой площадью, активностью и состоянием поверхности [22, 89]. [c.34]

    Процесс коррозии сплава или загрязненного металла определяется работой микрогальванических пар, в большом количестве возникающих на границе раздела металл — электролит. В результате процессов поляризации анодные участки могут пассивироваться настолько, что они становятся катодами по отношению к прежним катодным участкам. После изменения направления тока восстанавливается прежняя система распределения анодных и катодных участков. Такая периодическая меняющаяся система впервые рассмотрена в теории многоэлектродного потенциала И. Д. Томашевым. Явления поляризации коррозионных гальванических пар, как правило, снижают скорость коррозионных процессов. [c.520]

    Реальный металл, способный корродировать в данной среде, неизбежно содержит примеси других металлов, частью более благородных, чем основной металл. Эти примеси могут либо представлять собой отдельные фазы, либо приводить к образованию их в процессе коррозии. Поэтому поверхность металла рассматривается как своего рода инкрустация, состоящая из анодов (основной металл) и микроскопических катодов. Более благородные катоды и основной металл представляют собой серию многочисленных короткозамкнутых гальванических элементов. Между катодами и анодами существует определенная разность потенциалов, которая вызывает протекание электрических токов, заставляющих металл растворяться. Чем больше разность потенциалов между катодами и анодами, тем больше сила токов, текущих в местных элементах, тем больше, следовательно, скорость коррозии. Конечно, на поверхности металла необязательно должны находиться только два типа участков — аноды и катоды. Одновременное присутствие нескольких примесей приведет к образованию системы многоэлектродных элементов, характеризуемой наличием нескольких типов катодов и анодов, обла-, дающих различными потенциалами и поляризационными характеристиками. [c.188]


    Расчет частично поляризованной системы более сложен. Однако в связи с тем, что поляризационное и омическое сопротивление имеют одинаковую размерность, можно построить поляризационную кривую для данного электрода с учетом омического сопротивления в его цепи путем суммирования потенциала с омическим падением напряжения при данной силе тот (суммирование по вертикали). Теория многоэлектродных электрохимических систем имеет общий характер и позволяет объяснить явления, наблюдаемые в микромасштабах (межкристаллитная коррозия) и макромасштабах (механизм электрохимической защиты). [c.70]

    Коррозия гетерогенного сплава, а также узлов металлических конструкций, сочетающих детали из различных сплавов, осложнена тем, что в этих случаях функционирует многоэлектродная коррозионная система. Г. В, Аки- [c.62]

    В конечном счете характер протекания коррозии определяется величиной компромиссного потенциала. Структурные составляющие, имеющие более отрицательные исходные потенциалы, будут работать в данной системе как аноды, а имеющие более положительные потенциалы — как катоды. Графическое решение многоэлектродной коррозионной системы предложено [c.63]

    Н. А. Изгарышев с 1913 г. изучал пассивность металлов, главным образом, в растворах органических веществ. В 1922 г. им была изложена в книге Болезни металлов электрохимическая теория коррозии металлов. Предположение Н. А. Изгарышева, что поверхность чугуна или стали в растворах электролитов представляет собой комплекс связанных между собой электродов с различными потенциалами, в дальнейшем подтвердилось работами Г. В. Акимова и Н. Д. Томашова по многоэлектродны м системам. [c.9]

    Присоединение сильного анода к корродирующей системе (например, к двухэлектродному или многоэлектродному короткозамкнутому гальваническому элементу) оказывает защитное действие на коррозию системы, вызывает торможение работы коррозионных микроэлементов вследствие внешней катодной поляризации. Такое защитное действие присоединенного анода получило название протекторной защиты, а присоединенный электрод называется протектором. Уменьшение скорости электрохимической коррозии может быть достигнуто также при катодной поляризации металла приложенным извне током. Электрохимическая защита (протекторная, приложенная извне током) используется при защите от почвенной коррозии подземных трубопроводов и других сооружений, от коррозии металлов в морской воде и т. п. [c.35]

    В 1922 г. Н. А. Изгарышевым было отмечено, что с коррозионной точки зрения сталь и чугун представляют собой систему коротко-замкнутых гальванических элементов с различными электродными потенциалами. Короткозамкнутые системы многоэлектродных элементов наиболее распространены в коррозионной практике и изучение вопроса о механизме коррозии таких систем позволяет помимо решения теоретических вопросов, также правильно осуществлять конструирование химической аппаратуры или отдельных узлов аппаратов и изделий. [c.51]

    Коррозия стали в кислых растворах представляет собой, как известно, электрохимический процесс, протекающий с водородной деполяризацией, причем регулирующим фактором в данном случае является перенапряжение водорода. Различие в структуре отдельных участков сварного шва и наклепанного металла проявляется в кислой среде в значительно большей степени, чем в нейтральной, где регулирующим фактором коррозии является скорость диффузии кислорода к поверхности металла. Опыты ряда исследователей показали, что в растворе кислоты сварные соединения должны рассматриваться как многоэлектродная система, в которой шов и зона термического влияния сварки имеют более отрицательный потенциал и служат поэтому анодом, т. е. местом разрушения металла, тогда как основной металл играет роль катода. То же можно сказать и о протекающей в растворе кислоты коррозии металла с наклепанными и недефор-мированными участками. [c.417]

    Во многих случаях коррозии металлов вполне допустимо рассматривать корродирующую систему как двухэлектродный гальванический элемент, в котором один электрод является анодом, а другой — катодом. Однако в действительности коррозионная система содержит больше двух электродов и является многоэлектродной. Даже вполне определенная двухэлектродная система в условиях коррозии становится системой многоэлектродной под влиянием ряда внешних факторов коррозии (различная степень доступа кислорода к отдельным участкам поверхности металла, различная скорость движения электролита и т. п.). С электрохимической точки зрения поверхность металла, например стального образца, представляет. целую систему короткозамкнутых электродов, имеющих различные потенциалы (кристаллиты основного металла, карбид железа, включения серы, фосфора, кремния, низкоплавкая эвтектика по границам зерен и др.). При соприкооно.вении с коррозионной средой поверхность металла дифференцируется на анодные и катодные участки и важно знать, какие из электродов данной многоэлектродной системы являются анодами и какие — катодами. [c.33]

    Гетерогенно-электрохимический механизм рассматривается как частный случай гомогенно-электрохимического. В основе гетерогенно-электрохимического механизма лежит представление о том, что корродирующий металл представляет собой сложнук> систему многих электродов (участков металла с разными электродными потенциалами). Процесс электрохимической коррозии при этом протекает с пространственным разделением анодной и катодной реакции. Исходным положением по гетерогенно-электрохимическому механизму (теория локальных элементов) является представление о том, что коррозия обусловливается действием гальванических макро- и микроэлементов, возникающих на поверхности металла вследствие электрохимической гетерогенности — неэквипотенциальности ее. Поверхность корродирующего металла рассматривается как сложная в общем случае многоэлектродная система, скорость и распределение коррозионных процессов в которой определяются электрохимической характеристикой и площадью, а также сопротивлением между ними. [c.16]

    Процесс коррозии сварных соединений развивается вследствие их электрохимической неоднородности. Такая неоднородность наблюдается как в микро-, так и в макромасштабах. Межкристаллитная и ножевая коррозия развивается вследствие структурной и химической неоднородности системы микроэлектродов на участке граница—зерно. Язвенная коррозия сварных соединений кислотостойких сталей, разивающаяся, например, в растворах 3% ЫаС1- -0,1—0,5% НЫОз при температуре 80—100°С со скоростями до 10 мм/год, может быть следствием как макро-, так и микронеоднородности поверхности сварного соединения. В резальных многоэлектродных системах значения потенциалов разных участков металла отличаются, что соответствует различным стадиям окислительно-восстановительных процессов. Высокая коррозионная стойкость металла обеспечивается лишь в том случае, когда ее потенциал находится в области, соответ-ствуюш,ей пассивному состоянию. Практические инженерные задачи по защите от коррозии сводятся к тому, чтобы с помощью различных способов (металлургических, химических и других) научиться управлять уровнем потенциалов таких систем таким образом, чтобы они соответствовали пассивному состоянию. [c.125]

    II значению общего стационарного потенциала системы Vх- Значение псс.теднего позволяет рассчитать степень анодного и катодного контроля работы многоэлектродной системы, т. е. соответствующего суммарного процесса коррозии нескольких металлов в контакте друг с другом  [c.177]

    В обоих указанных случаях поверхность корродирующего металла представляет собой совокупность множества микро- и субмикро-гальванопар, которые возникают при соприкосновении неоднородной поверхности металла с электролитом,— получается многоэлектродная электрохимическая система. В результате одновременной деятельности этих микро- и субмикрогальванических элементов и протекает коррозия основного металла..  [c.359]

    Электрическое разъединение разнородных (е электрохимическом отношении) металлов производится в целях уменьшения скорости контактной коррозии полиметаллических конструкций и сооружений. При расчете требуемой величины сопротивлений разъединения различают коргю-зионные пары и многоэлектродные коррозионные системы. [c.242]

    Теория местных элементов получила в СССР большое развитие главным образом в работах Г. В. Акимова, а также Н. Д. Томашова и др. В результате исследований этих авторов была создана теория многоэлектродных систем, приближающая теорию коррозии к решению сложных практически важных задач. Эта теория позволяет при определенных условиях рассчитать силу тока, а следовательно, и скорость коррозии каждого элемента сложной корродирующей системы. При этом учитывается как сопротивление всех частей цепи, так и поляризация каждого электрода системы [Г. В. Акимов, Труды конгресса по испытанию материалов, Zuri h, 1930 Труды ЦАГИ, 70 (1931) Когг. U. Met., 8, 197 (1932) Теория и методы исследования коррозии металлов, Изд. АН СССР, М.-Л., 1945, стр. 203 Успехи химии, 12, 374 (1943) Г. В. Акимов, Н. Д. Томашов, ЖФХ, 8, 623 (1936) И. Д. Томашов, ЖФХ, [c.662]

    В макроэлектрохимическом отношении сварное соединение представляет собой сложную многоэлектродную систему, характерными электродами которой являются шов зона термического влияния с серией переходных участков (зоной перегрева, зоной перекристаллизации, зоной максимальной остаточной пластической деформации) основной металл (рис. 5, табл. 3). Возможны различные соотношения между электродными потенциалами различных зон и, следовательно, различная стойкость против коррозионного разрушения. Более сложная система начальных электродных потенциалов возникает при коррозии сварных соединений [c.19]

    Межкристаллитная коррозия дюралюмина трактуется обычно следующим образом. Сплав рассматривается как короткозамкнутая система, состоящая из трех электродов первый электрод — интерметаллическое соединение СиЛЬ второй электрод — твердый раствор меди в алюминии (алюминий, содержащий примерно 4% Си) третий электрод — практически чистый алюминий, который расположен около интерметаллического соединения СиАЬ-В этой короткозамкнутой системе практически чистый алюминий растворяется, являясь анодом по отношению к телу зерна твер дого раствора и к интерметаллическому соединению. Такая трактовка межкристаллитной коррозии алюминиевомедных сплавов вытекает из разработанной Г. В. Акимовым теории многоэлектродных элементов. [c.169]

    Многоэлектродные некороткозамкнутые (незаполяризованные) системы, работающие в условиях, в которых нельзя пренебречь омическим сопротивлением, как, например, при почвенной коррозии, имеют более сложное решение и нами здесь не рассматриваются. [c.54]


Смотреть страницы где упоминается термин Коррозия многоэлектродных систем: [c.220]    [c.33]    [c.33]    [c.226]    [c.55]    [c.28]    [c.126]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы Изд 4 -> Коррозия многоэлектродных систем




ПОИСК







© 2025 chem21.info Реклама на сайте