Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия скорость и коррозионный потенциал

    Уравнения, полученные на основе кинетической теории коррозии металлов, позволяют рассчитать потенциал металла в условиях его коррозии, а также скорость коррозионного разрушения по известным токам обмена, коэффициентам переноса и равновесным потенциалам анодной и катодной реакции. [c.500]

    На основании значений /внутр при разных значениях потенциала может быть построена зависимость /внутр = / (У), т. е. зависимость скорости коррозии металла от потенциала, представляющая большой самостоятельный интерес и необходимая, например, для установления доли электрохимического механизма коррозионного процесса (см. рис. 190), на котором абсцисса точки s даст /max = /э = х, Т. е. числитель правой части уравнения (627) для расчета Ьэ = х. [c.285]


    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]

    Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Ее-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи [c.88]

    Если скорость коррозии контролируется катодным процессом и коррозионный потенциал близок к потенциалу разомкнутой цепи анодных участков, то необходимая плотность тока только слегка превышает плотность соответствующего коррозионного тока. Но при смешанном контроле требуемый ток может быть значительно больше коррозионного, и он может еще более увеличиваться в случае протекания коррозионных процессов с анодным контролем. [c.222]

    Скорость коррозии железа в деаэрированном растворе НС1 с pH = 3 составляет 3,0 г/(м -сут). Рассчитайте коррозионный потенциал железа в этом растворе относительно 0,1н. каломельного электрода. Принять, что вся поверхность железа является катодом. [c.389]


    Процесс коррозии сплава или загрязненного металла определяется работой микрогальванических пар, в большом количестве возникающих на границе раздела металл — электролит. В результате процессов поляризации анодные участки могут пассивироваться настолько, что они становятся катодами по отношению к прежним катодным участкам. После изменения направления тока восстанавливается прежняя система распределения анодных и катодных участков. Такая периодическая меняющаяся система впервые рассмотрена в теории многоэлектродного потенциала И. Д. Томашевым. Явления поляризации коррозионных гальванических пар, как правило, снижают скорость коррозионных процессов. [c.520]

    Поляризационная диаграмма коррозионного процесса дает возможность установить не только значение максимальной силы тока и отвечающей ему стационарный потенциал, но и позволяет оценить влияние анодной и катодной стадий на скорость коррозии. В тех случаях, когда электропроводность коррозионной среды мала, она позволяет определить роль омического фактора. Количественное влияние катодной и анодной стадий на скорость коррозионного процесса, а также роль омического фактора могут быть выра жены с помощью так называемой степени катодного, анодного и омического контроля, соответственно обозначаемых через С , Сц и Сц. Все три величины определяются следующим образом  [c.253]

    Но пассивация металла может возникать за счет самого процесса коррозии в результате поляризации электрода. Этот процесс, зависящий от многих факторов, изучен в трудах Г. В. Акимова, Н. Д. Томашова и других ученых. Создавая условия поляризации в зависимости от состава сплава и состава коррозионной среды, можно защитить металл от разрушения, изменяя потенциал растворения. Сочетание анодной и катодной поляризации может значительно снизить скорость коррозионных процессов, увеличивая химическую стойкость металла. [c.548]

    Настоящий раздел содержит материалы, позволяющие рассчитать распределение скорости коррозии и коррозионного износа при различных наиболее часто встречающихся формах электрохимической коррозии металлов (контактной, язвенной, щелевой и др.). При этом необходимо использовать общие соотношения 1.1) - (1. ), устанавливающие связь скорости коррозии и коррозионного износа с величиной коррозионного потенциала и плотности тока. [c.125]

    Метод определения полноты катодной защиты по поляризационному потенциалу на границе раздела фаз металл—грунт. При равенстве плотностей анодного и катодного токов без наложения внешнего тока на границе раздела фаз металл — грунт устанавливается электронейтральность. В этом случае равновесный потенциал металла при известной концентрации его ионов легко определяется из уравнения Нернста. Это положение и взято за основу экспериментального определения полноты катодной защиты тю размеру защитного потенциала, так как равновесный потенциал металла в собственной соли становится все менее благородным с уменьщением концентрации ионов железа. Грунтовые электролиты обычно вообще не содержат корродирующего металла или содержат в малом количестве, поэтому равновесный потенциал в них менее благороден, чем коррозионный потенциал. Плотность тока катодной поляризационной кривой осаждения железа очень мала и не оказывает влияния на коррозионный потенциал, а следовательно, на скорость коррозии. Частные реакции (катодная и анодная) при равновесном потенциале протекают с одинаковой скоростью, поэтому в раствор материальные частицы не переходят. Это значение потенциала очень важно установить при катодной защите, однако практически это сделать чрезвычайно сложно. Так как, во-первых, равновесный потенциал растворения железа в конкретных условиях никак не связан с коррозионным потенциалом, а защитный потенциал связан с этим потенциалом, поэтому критерий полноты катодной защиты по потенциалу на границе фаз металл—грунт почти лишен смысла. Из асимптотического вида анодной кривой видно, что достигаемое путем снижения потенциала уменьщение растворения железа становится все меньще, однако небольшие отклонения от точного значения потенциала становятся едва заметными. [c.119]

    Чаще всего ингибитор оказывает одинаковое действие на всю металлическую поверхность, не проявляя повышенной эффективности на анодных или катодных участках, т. е. замедляет одновременно обе реакции. Коррозионный потенциал металла изменяется не очень сильно (чаще всего менее чем на 0,1 В), однако скорость коррозии резко снижается. Одна из существенных особенностей органических ингибиторов травления состоит в том, что их вводят в небольших количествах. Обычно концентрации ингибиторов травления составляют величину порядка 0,01—0,1%. [c.60]


    К Раствор Темпера- тура. С Продолжи- тельность травления Коррозионный потенциал мВ Скорость коррозии, г/м -24 ч Межкристал литная коррозия [c.96]

    Скорость коррозии возрастает по мере уменьшения pH. Это происходит потому, что с уменьшением pH наблюдается смещение коррозионного потенциала в область отрицательных значений в связи с возрастанием роли водородной деполяризации. При увеличении pH коррозия происходит с кислородной катодной деполяризацией, и скорость коррозии уменьшается. В интервале pH 5—10 скорость коррозии стали почти постоянна и мало зависит от pH, потому что в этой области коррозия определяется скоростью диффузии кислорода к корродирующей поверхности. При повышении концентрации кислорода в электролите сохраняется общий характер кривой, но она выходит на более высокие значения скорости коррозии. При pH > 10,0 при любой концентрации кислорода сталь практически не корродирует, так как наступает ее пассивация. [c.9]

    В общем случае (рис. 4.6) появление как анодной, так И катодной фазы приводит к увеличению скорости кислотной коррозии, но и коррозионный потенциал будет заметно [c.148]

    Точно так же различные принципы должны быть положены в основу защиты от коррозии в зависимости от того, какая стадия лимитирует общую скорость коррозионного процесса в тонких слоях электролита — омическое падение потенциала или поляризация. [c.5]

    На последнюю возможность мы хотели бы обратить особое внимание, поскольку обычно считают, что в условиях, когда скорость коррозионного процесса ограничивается скоростью протекания анодной реакции, катодная не может влиять на скорость коррозии. При этом, однако, упускают из вида то обстоятельство, что протекание катодного процесса при более положительных потенциалах, которое, например, будет иметь место при введении в воздушную атмосферу сернистого газа, может привести к резкому увеличению скорости коррозии даже в условиях, когда катодный процесс протекает беспрепятственно, т. е. без какой-либо поляризации. Это можно иллюстрировать схематической коррозионной диаграммой, приведенной на рис. 146. Коррозионный ток, как это видно из диаграммы, вследствие возрастания окислительно-восстановительного потенциала системы и сдвига кривой в область более положительных значений потенциала, увеличивается даже в том случае, когда анодная поляризация не меняется г. [c.215]

    На рис. 7 представлена схематическая анодная потенциостатическая кривая, с помощью которой легко понять, как изменяется скорость растворения (или ток) металла от потенциала. На кривой видны четыре характерных участка АБ — активное состояние металла БВ — металл находится на границе активно-пассивного состояния ВГ — устойчивое пассивное состояние металла и ГД —на электроде происходят разряд ионов гидроксила и выделение кислорода. На кривой также имеется ряд характерных точек, которые имеют значение в связи С рассматриваемыми способами ускорения коррозионных процессов <ра — потенциал, при котором скорость анодного растворения равна нулю фст — стационарный потенциал металла, при котором скорость анодного растворения равна скорости коррозии кор фп — потенциал пассивации, при котором наблюдается пере- [c.33]

    На рис. 1.15 дана анодная кривая АВСО, определенная потенциостати-чески для системы металл— среда, которая подвергается изменению в точке В. По мере того как потенциал становится более положительным, плотность тока возрастает в активной области АВ и достигает критической величины (критической плотности тока г кр), при которой скорость коррозии внезапно падает благодаря образованию защитной окисной пленки на поверхности металла. В этом случае говорят, что металл пассивен и скорость его коррозии, которая зависит от окисной пленки, значительно меньше, чем в активных условиях. Пассивное состояние определяется также окислительно-восстановительным потенциалом раствора и кинетикой катодной реакции. Линия ПК описывает восстановление ионов Н+ на катоде, когда металл активно корродирует в кислоте. Скорость коррозии и коррозионный потенциал определяются пересечением этой линии и анодной кривой в точке 7. В электролите с высоким окислительно-восстановительным потенциалом, который получают насыщением восстановительной кислоты кислородом или добавлением таких окис- [c.39]

    Электрохимическая кинетика — это область науки, изучающая скорость реакции на границе электрода и контактирующей с ним жидкости. Электрохимическая кинетика расширила наше понимание механизма коррозии и позволила практически определять скорость коррозии. Интерпретация коррозионных процессов как суммы частных электродных реакций была разработана Вагнером и Траудом [1 ].В данной главе введены важные понятия электрохимической кинетики — потенциал коррозии (называемый также компромиссным стационарным потенциалом), плотность коррозионного тока, плотность тока обмена и тафелевская зависимость плотности тока от потенциала. В настоящей книге электрохимическая кинетика рассмотрена кратко и в основном [c.46]

    Вагнер и Трауд [1] осуществили важный эксперимент, подтверждающий электрохимический механизм коррозии. Они измеряли скорость коррозии разбавленной амальгамы цинка в подкисленном растворе хлорида кальция, а также катодную поляри зацию ртути в этом электролите. Обнаружилось, что плотность тока, соответствующая скорости коррозии, равна плотности тока, необходимой для поляризации ртути до коррозионного потенциала амальгамы цинка (рис. 4.10). Другими словами, атомы ртути в амальгаме, составляющие большую часть поверхности, действуют как катоды (водородные электроды) , а атомы цинка — как аноды коррозионных элементов . Амальгама анодно поля- [c.63]

    Пассиваторы обычно представляют собой неорганические вещества с окислительными свойствами (например, хроматы, нитриты или молибдаты), которые пассивируют металл и сдвигают коррозионный потенциал на несколько десятых вольта в положительную сторону. Непассивирующими ингибиторами, такими как ингибиторы травления, обычно служат органические вещества, которые весьма слабо воздействуют на коррозионный потенциал, сдвигая его в сторону больших или меньших значений, не более чем на несколько тысячных или сотых долей вольта. Как правило, пассивирующие ингибиторы понижают скорость коррозии до очень малых значений, будучи в этом отношении более эффективными, чем большинство непассивирующих. [c.260]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    Короткозамкнутый гальванический элемент с разделенными электродными пространствами, содержит цинковый и ртутный электроды, погруженные в деаэрированный раствор НСк pH = 3,5. Какой ток протекаег в ячейке, если площадь рабочей поверхности каждого электрода равна 10 см Каково при этом значение скорости коррозии цинка в г/(м -сут). (Коррозионный потенциал цинка относительно 1н. каломельного электрода равен —1,03 В). [c.389]

    Определите коррозионный потенциал и скорость коррозии железной трубы, в которой при 25 С движется 0,5т раствор HjSO, со скоростью 0,2 м/с. Принять, что вся поверхность трубы является катодом, тафелевские наклоны равны 0,100 В, а плотности тока обмена для равновесия Fe/Fe и для выделения водорода на железе равны, соответственно, 10 и 10 А/м . [c.389]

    Определите коррозионный потенциал и скорость коррозии пинка в 1н. растворе НС1. Принять, что вся поверхность цинка является катодом, тафелев-скне наклоны равны 0,100 В, плотности тока обмена цинка и выделения водорода на цинке равны, соответственно, 0,1 и 10 А/м . [c.390]

    Механизм коррозии металла в почве определяется термодинамической вероятностью процесса. В почве, которую можно рассматривать как гетерогенный электролит, скорость коррозионного процесса по катодным и анодным реакциям, т, е. электрохимической коррозии, во много раз больше, чем химической. Поэтому принято считать, что почвенная коррозия протекает по механизму электрохимической коррозии, химическая коррозия в почвах практически отсутствует. Исходя из этого положения, явления, лежащие в основе почвенной коррозии, можно объяснить с позиций теории коррозии металлов в электролитах [2]. Известно, что разные металлы в различной степени подвержены коррозии. Чем легче совершается переход дтомов металла в ионы тем больше выделяется свободной энергии и тем менее коррозионностоек данный металл. Мерой этой энергии является значение нормального потенциала. [c.11]

    В реальных условиях на реакцию ионизации — разряда ионов металла — накладьшается какая-либо другая реакция, чаще всего выделение водорода или окисление кислорода. При реакции выделения водорода равновесный потенциал в выбранной среде отвечает величине вЕ . Применяя принцип независимого протекания электродных реакций и принцип суперпозиции поляризационных кривых [25], мы получим новую анодную кривую растворения металла , начинающуюся уже не от равновесного потенциала металла а от его коррозионного потенциала Есог (кривая 2, рис. 17, а). Скорость коррозии (в отсутствие внешнего тока) будет равна при этом i or- Если на поверхности корродирующего металла будет присутствовать примесь более электроположительного металла, то равновесный потенциал водородного электрода не изменится, но скорость выделения водорода при тех же потенциалах будет выше (кривая 3, рис. 17, а), что приведет к сдвигу потенциала коррозии в положительную сторону Есог) И К увеЛИЧеНИЮ ее скорости до or. Ситуация, однако, существенно меняется, если равновесный водородный потенциал положительнее, чем Е . Тогда введение металлов, на которых облегчается выделение водорода, приводит не к усилению, а к резкому замедлению коррозии, так как коррозионный потенциал окажется в этом случае в положительной области (рис. 17, б). [c.50]

    При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингообразования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования. [c.38]

    О2 + 2НаО + 4в = 40Н-лимитируется его диффузией к поверхности металла, чему соответствует горизонтальный участок предельного тока на поляризационной кривой. В насыщенных воздухом водных растворах упред 20ч-40 мкА/см . Ек1 — равновесный потенциал системы О2/ОН . При Е < Е 2 происходит катодное выделение водорода 2Й2О + 2е = Нц + 20Н". 3 — отвечающий ему равновесный потенциал. Если коррозия протекает автономно, т. е. без наложения внешнего тока, то скорости анодного и суммарного катодного процессов одинаковы и равны/ ор- Коррозионный потенциал при этом ( кор) отвечает равенству /а = / . Если при катодной поляризации от внешнего источника или с помощью протектора потенциал будет уменьшен до Е, плотность тока анодного растворения металла снизится до /а и будет достигнут защитный эффект, %  [c.57]

    Электрохимическая защита основана на характерной зависимости скорости коррозионных процессов от электродного потенциала металла. Катодную защиту широко используют для снижения скорости коррозии подземных сооружений (трубопроводов, кабелей связи, свайиых и стальных фундаментов), корпусов морских судов, эстакад, морских буровых скважин. Обычно катодная зашита применяется в нейтральных средах, когда коррозия протекает с кислородной деполяризацией, и, следовательно, в условиях повыш. катодной поляризуемости металла. Существуют два варианта катодной защиты. В первом варианте требуемое смещение электродного потенциала достигается путем катодной поляризации с помощью внеш. источника тока и вспомогат. инертных анодов (защита с наложенным током) во втором - посредством контакта его с массивными электродами из более электроотрицат. металла, к-рые, анодно растворяясь, обеспечивают протекание катодного тока к защищаемой конструкции (гальванич. защита). В качестве жертвенных анодов используют сплавы. Первый вариант применяют для защиты протяженных конструкций, обычно в комбинации с изолирующими покрытиями, в средах как с низким, так и с высоким электрич. сопротивлением. Преимущество его-в легкости регулирования защитного тока и поддержании защитного потенциала даже в условиях изменения изолирующих св-в покрытия во времени. Однако при использовании катодной защиты с наложенным током др. металлнч. конструкция, расположенная вблизи защищаемой, может служить проводником и подвергаться усиленной коррозии. Гальванич. вариант катодной защиты обычно применяют для 3. от к. небольших конструкций с хорошим покрытием и низким потреблением тока или для локальной защиты. Обычио при этом не наблюдается коррозия соседних металлич. конструкций. [c.166]

    ЭЛЕКТРОФОТОГРАФИЯ, см. Ретография. ЭЛЕКТРОХИМЙЧЕСКАЯ ЗАЩИТА металлов от коррозии, основана на зависимости скорости коррозии от электродного потенциала металла. В общем случае эта зависимость имеет сложный характер и подробно описана в ст. Коррозия металлов. В принципе, металл или сплав должен эксплуатироваться в той области потенциалов, где скорость его анодного растворения меньше нек-рого конструктивнодопустимого предела, к-рый определяют, исходя из срока службы оборудования или допустимого уровня загрязнения технол. среды продуктами коррозии. Кроме того, должна быть мала вероятность локальных коррозионных повреждений. Эго т. наз. потенциостатич. защита. [c.458]

    На рис. 4.2 приведены диаграмма состояния и соответствующие ей зависимости скорости и потенциала коррозии Zn,Ag- плaвoв в нейтральном растворе KNOз. Коррозионный потенциал Е обнаруживает четкую тенденцию к плавному понижению по мере увеличения содержания цинка в сплаве, однако скорость коррозии К остается почти постоянной, несмотря, на то что система 2п—Ag имеет несколько промежуточных фаз [21, 23]. Небольшое возрастание скорости коррозии при переходе к сплавам, богатым цинком, вероятно, объясняется появлением некоторого вклада водородной деполяризации. Описанное поведение свойственно также и многим другим интерметаллйческим системам (2п—Си, Сд—Си,-С(1—Ag и др.), контактирующим с аэрированным нейтральными растворами [21]. [c.146]

    Для установления взаимосвязи диаграммы состояния со скоростью коррозионных процессов данные по коррозии с кислородной деполяризацией обычно оказываются малосодержательными и приводят к тривиальным выводам. Более содержательными являются результаты коррозии с водородной деполяризацией. С их помощью можно наблюдать более или менее сложную зависимость скорости процесса и корро-зирнного потенциала от химического и фазового состава сплава, в том числе и скачки в скорости коррозии. Возьмем систему d—Bi, характеризующуюся ничтожной растворимостью компонентов в твердом состоянии (рис. 4.3). Скорость кислотной коррозии гетерогенных d,Bi-сплавов определяется наличием фазовых составляющих с различными электрохимическими свойствами и монотонно возрастает по мере увеличения содержания электрохимически отрицательной фазы d коррозионный же потенциал обнаруживает быстрый сдвиг [c.146]

    В системе 1п—8Ь образуется конгруэнтно плавящееся химическое соединение 1п5Ь, растворимость на основе компонентов и самого интерметаллида также ничтожно мала. Коррозионное поведение 1п,8Ь-сплавов левой половины диаграммы в кислых средах определяется, как и в предыдущем случае, их структурной неоднородностью, т. е. существованием фазовых составляющих типа 1п—1п8Ь [21]. С изменением соотнощения фаз скорость коррозии проходит через максимум , а коррозионный потенциал резко изменяется в положительную сторону (рис. 4.4). Скачок в точности соответствует интерметаллиду 1п8Ь. Сплавы же правой части диаграммы корродируют преимущественно с кислородным контролем, поэтому скорость коррозии мало зависит от их состава. [c.147]

    Для шести основных фазовых диаграмм металлических двухкомпонентных систем можно определить типичные концентрационные зависимости скорости и потенциала коррозии сплавов, которые могут использоваться как при изучении фазового состава сплавов по их коррозионным -свойствам, так и при прогнозировании коррозионйого поведения сплавов по их фазовому составу (см. рис. 4.6). Так как коррозия сплавов в нейтральных (с кислородной деполяриза-.цией) и кислых (с водородной деполяризацией) средах контролируется принципиально различающимися стадиями (диффузионной и кинетической), для этих сред существуют разные зависимости скорости и потенциала коррозии от химического и фазового состава сплавов. [c.151]

    Исследовалась внешняя коррозия стенок резервуаров в условиях, характерных для протекания кислородной коррозии. Критерием коррозионной устойчивости металла и оценки скорости разрушения металла в местах коррозионных повреждений может служить удельное сопротивление дна резервуара. В интервале 6—19 кОм-см наблюдается протекание коррозии металла. Если сопротивление >19 кОм-см, риск возникновения коррозионных разрушений невелик. Другим критерием оценки коррозионной опасности может служить потенциал E u/ aso -Для обследованных резервуаров в среднем он составляег —555 мВ, 95% обследованных резервуаров имеют потенциал u/ uso от —410 до —780 мВ, при этом влияние блуждаюших токов не наблюдается. Достоверность данных прогнозирования детерминированных объектов определяется соответствием моде- [c.184]

    При установивщемся процессе самопроизвольного (без наложения внешнего тока) растворения металла скорости анодной и катодной реакций одинаковы. Равенство скоростей анодной и катодной реакций определяет стационарный потенциал металла в данном электролите и установившуюся скорость растворения. Из условия стационарности следует, что торможение хотя бы одной из реакций приводит к замедлению коррозионного процесса. Поскольку коррозия является электрохимическим процессом, то целесообразно применять электрохимические способы торможения анодной или катодной реакции. Поэтому электрохимические методы снижения коррозии предусматривают смещение потенциала как в отрицательном, так и в положительном направлении от стационарного значения. [c.9]

    Смешанный контроль обнаруживается тогда, когда скорость коррозии почти в одинаковой степени определяется как катодной, так и анодной реакциями. Примером коррозии при смешанном контроле может служить коррозия стали в нёокисляю-щих кислотах. Коррозионный потенциал металла в случае смешанного контроля сдвинут примерно на одинаковое расстояние от анодного и от катодного потенциалов в разомкнутом элементе (рис. П-30, в). [c.48]


Смотреть страницы где упоминается термин Коррозия скорость и коррозионный потенциал: [c.148]    [c.491]    [c.389]    [c.14]    [c.15]    [c.44]    [c.48]    [c.215]    [c.190]    [c.195]    [c.156]   
Теоретическая электрохимия (1981) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная скорости

Скорость коррозии

Ток коррозии коррозионный



© 2025 chem21.info Реклама на сайте