Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструктивные методы

    К деструктивным методам очистки относятся нейтрализация, окисление, хлорирование и другие химические процессы, вызывающие образование нерастворимых веществ, выпадающих в виде легко удаляемых осадков, а также уменьшающие концентрацию растворимых веществ, изменяющие реакцию, воды и обесцвечивающие ее окраску. [c.264]

    Деструктивные методы очистки сводятся к разрушению загрязня- [c.256]


    Деструктивные методы переработки отходов [c.491]

    Сущность деструктивных методов состоит в том, что под действием восстановительных и окислительных реакций, температуры и давления соединения изменяют свою первоначальную структуру и состояние, превращаясь в другие соединения, которые могут быть использованы в народном хозяйстве. Выбор деструктивных методов производится с учетом состава, вида соединений, свойств примесей, расхода газов и сточных вод, а также требований к качеству обезвреженных продуктов. [c.491]

    Наиболее детальные сведения о составе и строении алифатических фрагментов молекул ВМС нефтей получены с помощью деструктивных методов. Найдено, что относительное содержание алифатических заместителей снижается по мере удлинения цепочки [12, 379 и др.]. Наши эксперименты по окислению и озонированию асфальтенов показали, что это снижение, по-видимому, неплавное, так как в распределении продуктов по числу атомов С [c.197]

    Базируясь на коллоидно-химических представлениях, нефтя юе сырье и нефтепродукты можно рассматривать как неструктурированные (ненаполненные) и структурированные (наполненные) системы. Неструктурированные системы представляют собой смесь углеводородов, не склонных при данных условиях к межмолекулярным взаимодействиям, приводящим к образованию ассоциатов. Такие системы термодинамически стабильны, легко подвижны и не расслаиваются. Ассоциаты (дисперсная фаза) в этих системах отсутствуют. К неструктурированным нефтяным системам из товарных нефтепродуктов, не расслаивающихся в условиях изготовления и применения, относятся газы, бензины, реактивные и дизельные топлива, масла. До настоящего времени исследователи и технологи занимались получением неструктурированных систем (нефтяного сырья и нефтепродуктов), используя для этой цели процессы ректификации, экстракции, адсорбции, депарафинизации, деасфальтизации и с помощью деструктивных методов. [c.33]

    Регенеративная очистка может применяться лишь в том случае, если полученный продукт своим количеством и стоимостью окупит затраты производства. Часто при регенеративных методах не дово дят воду до состояния, пригодного к выпуску в водоем. В таких случаях воду подвергают доочистке деструктивными методами. [c.227]

    Масс-спектрометрия в отличие от других рассматриваемых в этой книге физических методов анализа относится к деструктивным методам (исследуемый образец разлагается). При этом достигается намного большая чувствительность и скорость анализа. Для получения хорошего масс-спектра на современных приборах требуется до 10 —10 г вещества, а хромато-масс-спектрометры позволяют обнаружить в сложных смесях и исследовать органические соединения при их содержании менее 10 —10 г и времени развертки спектра в несколько секунд. [c.172]


    Составы вод весьма разнообразны, поэтому могут быть разнообразными и методы их очистки. Методы очистки можно разделить на две группы деструктивные и регенеративные. При деструктивных методах примеси разрушаются и или выводятся из воды в виде газов или осадков, или остаются в воде в обезвреженном состоянии. При регенеративных способах примеси извлекаются и передаются для использования. Применение того или иного способа определяется в первую очередь экономическими соображениями. [c.345]

    Очистка сточных вод от растворенных органических примесей. Обезвреживание сточных вод, содержащих органические примеси, проводят деструктивным и регенеративным методами. К деструктивным методам относится термоокисление и электроокисление. Термоокисление заключается либо в сжигании сточных вод совместно с топливом (огневое обезвреживание), либо в окислении примесей кислородом воздуха, озоном, хлором и другими окислителями. При электроокислении сточные воды пропускаются через электролизер, в котором происходит электрохимическое окисление органических примесей на нерастворимом аноде. Например, фенол окисляется на аноде до оксида углерода и малеиновой кислоты [c.396]

    Быстро растущий спрос на бензин нельзя было удовлетворить естественным бензином из нефти, поэтому получение дополнительных количеств бензина из той же нефти при помощи деструктивного разложения ее высокомолекулярных фракций приобрело большую актуальность и способствовало развитию этих методов. Затем возникла не менее важная задача повышения качества бензинов для моторов с повышенными мощностями, увеличенными степенями сжатия, использовавшими наддув и пр., что также было решено при помощи деструктивных методов переработки. [c.40]

    Деструктивные методы переработки нефти одновременно решают количественную и качественную задачи обеспечения топливом моторного парка, что способствовало бурному их развитию в нефтеперерабатывающей промышленности. [c.40]

    Таким образом, деструктивные методы переработки нефти, получившие преимущественное развитие в нефтеперерабатывающей промышленности для производства моторных топлив, в настоящее время становятся мощным источником сырья для нефтехимического синтеза. [c.41]

    К наиболее распространенным методам подготовки сырья для производства нефтяного углерода относятся термоконденсация и термополимеризация. Деструктивные методы позволяют одновременно увеличивать отношение дисперсной фазы к дисперсионной среде и изменять молекулярную структуру компонентов сырья, что весьма важно для получения нефтяного углерода специального качества. При деструктивной переработке происходит непрерывное и необратимое изменение состава и качества дисперсной фазы и дисперсионной среды, в конечном счете завершающейся формированием продуктов более низкой и более высокой молекулярной массы, чем у исходного сырья. [c.7]

    Вполне вероятно, что наиболее важным приложением масс-спектрометрии является идентификация и подтверждение состава продуктов синтеза или компонентов, извлеченных из (природных) продуктов или образцов. Уступая только спектроскопии ядерного магнитного резонанса, масс-спектрометрия играет важнейшую роль в подтверждении или выяснении структуры веществ в лабораториях органического синтеза. Наиболее важное преимущество масс-спектрометрии перед ЯМР заключается в очень малом количестве вещества, подвергаемого анализу, а точнее, нанограммы в масс-спектрометрии по сравнению с микрограммами в ЯМР. Но к сожалению, масс-спектрометрия часто не дает полного и окончательного ответа, и спектроскопия ЯМР все-таки необходима, например, для выяснения вопроса об изомерах. Недостаток масс-спектрометрии заключается в том, что она является деструктивным методом анализа, и используемый образец нельзя восстановить для дальнейшего анализа или синтеза. [c.300]

    Эксплуатационные затраты на станции, очищающей адсорбционным деструктивным методом 10 000 м /сут [c.128]

    Наибольшее распространение процесс гидрокрекинга получил в нефтепереработке США. В условиях этой страны применение гидрокрекинга обусловливалось необходимостью производства больших количеств моторных топлив, что сделало экономичным глубокую переработку нефти деструктивными методами. Используя научные и промышленные достижения, американские фирмы в короткий срок спроектировали и построили множество промышленных установок гидрокрекинга во всем мире. На рис. 42 показан рост мощностей установок гидрокрекинга в ] 965-2000 гг. В 2000 г. в разных странах мира работали установки гидрокрекинга общей мощностью переработки около 240 млн м сырья в год (в т. ч. 87 млн м — в США и Канаде). Собственные лицензии на процесс гидрокрекинга дистиллятов имеют несколько фирм США ЮОПи (процесс Юникрекинг ), Шеврон протсс Изокрекинг ), Амоко ( Ультракрекинг ), Шелл (процесс Шелл ), Галф ойл ( НС гидрокрекинг ), а также Бритиш Петролеум ъ Великобритании и ФИН-БАСФ во Франции и Германии. Ряд фирм владеет лицензиями на гидрокрекинг остаточных видов сырья. [c.230]


    Деструктивный метод регенерации адсорбентов целесообразно применять в тех случаях, когда повторное использование ПАВ, выделенных из сточных вод, затруднено. Термическую регенерацию осуществляют смесью продуктов горения газа с водяным паром прн 700—800 °С в отсутствие кислорода в течение 10—40 мин. Особенно быстро (за 10—20 мин) регенерация протекает в псевдоожижепном слое регенерируемого адсорбента. Для регенерации порошкообразных углей применяют метод каталитического окисления адсорбированных ПАВ при барботаже кислорода через суспензию активного угля в водном растворе сульфата меди. [c.217]

    Широкое развитие автомобильного и авиационного транспорта требует значительного увеличения выпуска светлых нефтепродуктов. Это может быть достигнуто применением вторичных методов переработки, основанных на разложении (деструкции) продуктов прямой гонки. С помощью деструктивных методов выход бензина (считая на нефть) можно повысить в 1,5—2 раза в результате переработки тяжелых небензиновых фракций (керосино-газойлево-соляровых) и мазута. Деструктивные методы переработки нефтяного сырья позволяют не только увеличить отбор светлых продуктов, но и значительно повысить их качество (в основном детонационную стойкость). [c.9]

    С помошью деструктивных методов выход бензина, считая ва нефть, можно повысить в 1,5-2 раза путем включения в пврвоэботку тяжелых вебензиновых фракций. [c.3]

    В 20-е годы текуд] его столетия в нефтеперерабатывающей промышленности получают развитие деструктивные методы переработки нефти, направленные в первую очередь на расширение ресурсов моторных топлив, получаемых из нефти. [c.40]

    Гибкость и многообразие каталитических процессов позволяют широко использовать деструктивные методы переработки нефти с целью получения сырья для химических производств. В этой области наметились две тенденции с одной стороны, использование отходов (в первую очередь олефинсо-держащих газов) основных процессов, направленных на получение моторных топлив, и, с другой стороны, создание специальных процессов глубокой деструкции нефтяного сырья для получения необходимых количеств оле-финовых углеводородов. [c.41]

    Нередки ситуации, когда встречный синтез вообще оказывается единст-венньщ средством выбора между несколькими альтернативными структурами изучаемого вещества. Так бывает в тех случаях, когда вешество достутшо в ничтожно малых количествах — в долях миллиграмма или даже микротраммах, — которых явно мало для использования деструктивных методов анализа и даже для применения современных спектральных методов. В то же время этих количеств вполне может хватить для идентификации вещества, т.е. установления тождественности двух его образцов, например, синтетического и природного. [c.40]

    Выше мы обсудили основные типы реакций и методов, используемых для образования связей С-С углеродного скелета ациклических или циклических молекул. Этот набор должен бьггь дополнен еще группой методов, в которых связь С-С подвергается расщеплению. Такие деструктивные методы могут служить очень существенным дополнением к уже рассмотренным конструктивным методам, поскольку во многих случаях целесообразность использования того или иного из конструктивных методов определяется возможностью целенаправленно осуществлять изменение скелета собираемой структуры. [c.257]

    В промышленных условиях чаще всего недеструктивные методы служат дополнением к деструктивным методам иодготовки сырья для производства нефтяного углерода. Например, путем термоконденсации подготавливают дистиллятное сырье — концентрат полициклических ароматических углеводородов и более тяжелых компонентов определенной молекулярной структуры, а затем путем экстракции, адсорбции, испарения и других методов отделяют дисперсную фазу от дисперсионной среды. Недеструктивными методами можно получить нефтяной углерод, используя и тяжелую часть дисперсионной среды, и дисперсную фазу. [c.8]

    Для нефтепродуктов характерны некоторые общие закономерности в распределении углеводородов. С увеличением температуры кипения молекулярная масса углеводородов, естественно, увеличивается, структура углеводородов усложняется. В более высококипящих фракциях содержится больше полициклических цикланов и аренов. При переходе от бензинов к реактивным и дизельным топливам количество алканов нормального строения уменьшается, а структура изоалканов становится более разнообразной. Непредельные углеводороды в прямогонных дистиллятах и остатках от перегонки нефти содержатся в весьма небольших количествах. Относительно много непредельных в бензинах, некоторых дизельных топливах и мазутах, получаемых термическим, каталитическим крекингом и другими деструктивными методами, а также компаундированием прямогонных дистиллятов с продуктами деструктивной переработки. Реактивные и прямогонные дизельные топлива и мазуты непредельных углеводородов практически не содержат. Мало непредельных и в большинстве масел. [c.71]

    Целый ряд классических деструктивных методов уста новления строения органических веществ привел иссле дователей прошлого века к структурам типа 1—13 дл .1оносахаридов. И в смысле справедливости строени углеродного скелета и положения заместителей эти струк туры отражают непреложную, добытую эксперименто истину. Тем не менее они не соответствуют действитель пому строению моносахаридов, хотя и удобны в дидакти ческом плане для описания и запоминания относитель ных конфигураций асимметрических центров (чем мы дальнейшем еще воспользуемся). [c.10]

    Если не считать отдельных случаев гидролиза экзо-полисахаридазами, у нас пока нет возможностей перебрать полисахаридную цепь звено за звеном, выяснив тем самым полную и точную последовательность всех остатков. А деструктивные методы типа частичного гидролиза оставляют возможность для существования каких-то минорных невыявленных сегментов (как мы видели на примере агарозы). Поэтому структуры цепей, выведенные на основании даже очень подробного исследования, как правило, характеризуются некоторой неопределенностью, по крайней мере в отношении наличия (или отсутствия) какого-то числа отклонений, аномальных звеньев, а также в отношении ограниченной точности определения количественных параметров структуры (таких, например, как число разветвлений на макромолекулу). Расширение арсенала методов, примененных к данному полисахариду, и повышение их точности может, конечно, снизить верхнюю оценку для содержания миноров и для ошибки [c.108]

    Классификация методов очистки. Для потребления в оборотных системах и технол. процессах сточные воды подвергают очистке до необходимого качества, к-рое зависит от вида хим. произ-ва. В пром-сти применяют мех., хим., физ.-хим., биохим. и термич. методы очистки, подразделяемые на рекуперационные и деструктивные. Рекуперац. методы предусматривают извлечение из сточных вод и дальнейшую переработку всех ценных в-в. С помощью деструктивных методов в-ва, загрязняющие сточные воды, подвергаются разрушению путем окисления или восстановления продукты деструкции удаляются из стоков в виде газов или осадков. [c.433]

    Одним из чрезвычайно интересных новых областей приложения масс-спектрометрии, которые активно изучается в настоящее время, является биохимия, или, точнее, определение параметров белков. Это является результатом внедрения таких методов, как MALDI и ионизации электрораспылением, которые обеспечивают экспрессное и точное определение средних молекулярных масс белков при малом количестве материала (на уровне пикомолей или ниже). Определяют среднюю молекулярную массу белка, так как для разделения различных изотопных пиков потребовалось бы спектральное разрешение по массе свыше 10000. В сравнении с другими, более традиционными биохимическими методами для определения молекулярной массы биологических макромолекул, такими, как SDS-PAGE и гель-проникающей хроматографии, масс-спектрометрия обеспечивает быстрое и легкое измерение, требующее малых количеств материала и обеспечивающее непревзойденную точность. Однако масс-спектрометрия является деструктивным методом, и использованный образец нельзя восстановить для последующих экспериментов. [c.307]

    Сами Правила рассчитаны на обеспечение чистоты реки или водоема лишь в створах пунктов питьевого, культурно-бытового или рыбохозяйственного водопользования. Такой подход уже привел к тому, что многие реки нашей страны зафязнены локально или непрерывно почти на всем протяжении. В непроточных и слабопроточных водоемах процессы самоочищения протекают еще медленнее и нередко возникают аварийные ситуации. Такие явления возникли в Ладожском озере — одном из источников водоснабжения Санкт-Петербурга, во многих крупных водохранилищах. Все современные очистные сооружения построены с использованием деструктивных методов очистки, которые сводятся к разрушению зафязняющих воду веществ путем их окисления, восстановления, гидролиза, разложения и т. п., причем продукты распада частично удаляются из воды в виде газов или осадков, а частично остаются в ней в виде растворимых минеральных солей. В результате так называемые нетоксичные минеральные соли поступают в природные воды в количествах, соответствующих ПДК, но во много раз превышающих их естественные концентрации в водной среде. Поэтому сброс в реки и водоемы сточных вод, прошедших глубокую очистку от органических соединений азота, фосфора, серы и других элементов, тем не менее, повышает содержание в воде растворимых сульфатов, нитратов, фосфатов и других минеральных солей, вызывающих эвтрофикацию водоемов, их цветение за счет бурного развития синезеленых водорослей последние, отмирая, поглощают массу кислорода и лишают воду способности к самоочищению. [c.201]

    Регенеративные методы позволяют извлекать и утилизировать содержащиеся в воде ценные вещества. Они далеко не всегда очищают воду до такого состояния, в котором ее можно сбрасывать в водоемы. В этих случаях воду доочищают деструктивными методами. [c.257]

    Термическое растворение ТГИ не имеет аналогии с обычными физическими и физико-химическими процессами растворения более простых веществ. Оно относится к деструктивным методам переработки. Процесс обычно осуществляют в углеводородной среде при жестких усповиях, хотя и значительно более мягких по сравнению с термической деструкцией. [c.249]


Смотреть страницы где упоминается термин Деструктивные методы: [c.436]    [c.7]    [c.8]    [c.101]    [c.99]    [c.435]    [c.42]    [c.100]    [c.4]    [c.360]   
Смотреть главы в:

Введение в химию и технологию органических красителей Изд 2 -> Деструктивные методы




ПОИСК







© 2025 chem21.info Реклама на сайте